Using scanning tunneling microscopy (STM), we observed that adsorption of Se on Cu(111) produced islands with a (√3×√3)R30° structure at Se coverages far below the structure's ideal coverage of 1/3 monolayer. On the basis of density functional theory (DFT), these islands cannot form due to attractive interactions between chemisorbed Se atoms. DFT showed that incorporating Cu atoms into the √3-Se lattice stabilizes the structure, which provided a plausible explanation for the experimental observations. STM revealed three types of √3 textures. We assigned two of these as two-dimensional layers of strained CuSe, analogous to dense planes of bulk klockmannite (CuSe). Klockmannite has a bulk lattice constant that is 11 % shorter than √3 times the surface lattice constant of Cu(111). This offers a rationale for the differences observed between these textures, for which strain limits the island size or distorts the √3 lattice. STM showed that existing step edges adsorb Se and facet toward ⟨12‾ 1⟩, which is consistent with DFT.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/cphc.201600207 | DOI Listing |
Materials (Basel)
December 2024
Faculty of Mechanical Engineering, University of West Bohemia, 301 00 Pilsen, Czech Republic.
The aim of this study was to investigate the potential of polymeric cell structures for the production of energy absorbers and to focus on the geometric optimization of polymeric cell structures producible by additive technologies to achieve the required deformation characteristics, high material efficiency and the low weight of the resulting absorber. A detailed analysis of different types of cell structures (different lattice structures and honeycombs) and their properties was performed. Honeycombs, which have been further examined in more detail, are best suited for absorbing large amounts of energy and high levels of material efficiency at known load directions.
View Article and Find Full Text PDFJ Phys Condens Matter
January 2025
Chinese Academy of Sciences, 19 jia, Yuquan Road, Shijingshan District, Beijing, Beijing, 100049, CHINA.
Previous studies of the transition metal chalcogenide Ta2NiSe5 has identified two phase transitions occurring between 0-10GPa, involving the excitonic insulator-to-semiconductor transition at 1GPa and the semiconductor-to-semimetal transition at 3GPa. However, there is still a lack of in-depth research on the changes in its physical properties changes above 10GPa. In this study, Ta2NiSe5 were investigated under high-pressure conditions using high-pressure X-ray diffraction and high-pressure X-ray absorption experiments.
View Article and Find Full Text PDFNanomaterials (Basel)
January 2025
Shanghai Engineering Research Centre of Ultra Precision Optical Manufacturing, Department of Optical Science and Engineering, School of Information Science and Technology, Fudan University, Shanghai 200433, China.
Developing switchable and multifunctional metasurfaces is essential for high-integration photonics. However, most previous studies encountered challenges such as limited degrees of freedom, simple tuning of predefined functionality, and complicated control systems. Here, we develop a general strategy to construct switchable and multifunctional metasurfaces.
View Article and Find Full Text PDFJ Am Chem Soc
January 2025
Key Laboratory of Cluster Science of Ministry of Education, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081, People's Republic of China.
The integration of spin crossover (SCO) magnetic switching and electric polarization properties can engender intriguing correlated magnetic and electric phenomena. However, achieving substantial SCO-induced polarization change through rational molecular design remains a formidable challenge. Herein, we present a polar Fe(II) compound that exhibits substantial polarization change in response to a thermally regulated low-spin ↔ high-spin transition.
View Article and Find Full Text PDFJ Phys Chem Lett
January 2025
DST Unit of Nanoscience (DST UNS) and Thematic Unit of Excellence (TUE), Department of Chemistry, Indian Institute of Technology Madras, Chennai 600036, India.
Clathrate hydrates (CHs) are believed to exist in cold regions of space, such as comets and icy moons. While spectroscopic studies have explored their formation under similar laboratory conditions, direct structural characterization using diffraction techniques has remained elusive. We present the first electron diffraction study of tetrahydrofuran (THF) and 1,3-dioxolane (DIOX) CHs in the form of nanometer-thin ice films under an ultrahigh vacuum at cryogenic temperatures.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!