In recent years, the use of statins has been reported to be associated with a reduced risk of prostate cancer (PCa), particularly metastatic PCa. The mechanisms underlying these epidemiological observations are poorly understood. Epithelial-mesenchymal transition (EMT) is a critical initial step and a hallmark for cancer metastasis. In the present study, the relationship between simvastatin and EMT in PCa and the mechanism involved was investigated. It was demonstrated that simvastatin inhibited the EMT as assessed by reduced expression of N-cadherin and vimentin, and increased E-cadherin in TGF-β1 treated DU145 PCa cells. Furthermore, simvastatin inhibited TGF-β1-induced migration and invasion of DU145 cells. The TGF-β1/Smad pathway and non-Smad pathway were investigated in simvastatin-treated DU145 cells. Simvastatin had no effect on TGF-β1-induced phosphorylation of Smad2 and Smad3. In the non-Smad pathway, simvastatin reduced TGF-β1-induced p38 MAPK phosphorylation, but had no effect on TGF-β1-induced Erk1/2 phosphorylation. Simvastatin attenuated TGF-β1-induced EMT, cell migration and invasion in DU145 cells. These effects may have been mediated by the inhibition of p38 MAPK phosphorylation, not through the canonical Smad pathway. Therefore simvastatin may be a promising therapeutic agent for treating PCa.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4840973 | PMC |
http://dx.doi.org/10.3892/ol.2016.4404 | DOI Listing |
Nutrients
December 2024
Department of Biochemistry, College of Medicine, Soonchunhyang University, Cheonan 31511, Republic of Korea.
Dysregulated cellular metabolism is known to be associated with drug resistance in cancer treatment. In this study, we investigated the impact of cellular adaptation to lactic acidosis on intracellular energy metabolism and sensitivity to docetaxel in prostate carcinoma (PC) cells. The effects of curcumin and the role of hexokinase 2 (HK2) in this process were also examined.
View Article and Find Full Text PDFMolecules
December 2024
Department of Chemistry & Biochemistry, California State University, Fresno, CA 93740, USA.
Prostate cancer remains a significant global health concern, prompting ongoing exploration of novel therapeutic agents. Licochalcone A, a natural product in the chalcone family isolated from licorice root, is characterized by its enone structure and demonstrates antiproliferative activity in the micromolar range across various cell lines, including prostate cancer. Building on our prior success in enhancing curcumin's antiproliferative potency by replacing the substituted phenol with a 1-alkyl-1H-imizadol-2-yl moiety, we applied a similar approach to design a new class of licochalcone A-inspired chalcones.
View Article and Find Full Text PDFBMC Res Notes
December 2024
Department of Biological and Biomedical Sciences, Aga Khan University, Karachi, Pakistan.
Introduction: DU145 and LNCaP are classic prostate cancer cell lines. Characterizing their baseline transcriptomics profiles (without any intervention) can offer insights into baseline genetic features and oncogenic pathways that should be considered while interpreting findings after various experimental interventions such as exogenous gene transfection or drug treatment.
Methods: LNCaP and DU145 cell lines were cultured under normal conditions, followed by RNA extraction, cDNA conversion, library preparation, and RNA sequencing using the Illumina NovaSeq platform.
Oncol Res
December 2024
Department of Rehabilitation, The People's Hospital of Guangxi Zhuang Autonomous Region, Nanning, 530000, China.
Background: Transmembrane emp24 trafficking protein 3 (TMED3) is associated with the development of several tumors; however, whether TMED3 regulates the progression of prostate cancer remains unclear.
Materials And Methods: Short hairpin RNA was performed to repress TMED3 in prostate cancer cells (DU145 cells) and in a prostate cancer mice model to determine its function in prostate cancer and .
Results: In the present study, we found that TMED3 was highly expressed in prostate cancer cells.
Asian Pac J Cancer Prev
December 2024
Department of Molecular Biology, EW Villa Medica, Dhaka, Bangladesh.
Objective: This study investigated the potential anticancer properties of Myo-inositol on the DU-145 prostate cancer cell line.
Methods: The DU-145 cells have been treated to different doses of Myo-inositol in order to ascertain the half-maximal inhibitory concentration (IC50) using the trypan blue exclusion assay. The impact of Myo-inositol on proteomic profiles was evaluated using 2D gel electrophoresis and liquid chromatography-mass spectrometry (LC-MS).
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!