Determination of Kamlet-Taft parameters for selected solvate ionic liquids.

Phys Chem Chem Phys

Institute for Frontier Materials, Deakin University, Waurn Ponds Campus, Geelong, Victoria 3216, Australia. and Strategic Research Centre for Chemistry and Biotechnology, Deakin University, Waurn Ponds Campus, Geelong, Victoria 3216, Australia.

Published: May 2016

The normalised polarity E and Kamlet-Taft parameters of recently described solvate ionic liquids, composed of lithium bis(trifluoromethyl)sulfonimide (LiTFSI) in tri- () or tetraglyme () have been determined and compared to the parent glyme ( and ). We show that these solvate ionic liquids have a high polarity (, (E) = 1.03; , (E) = 1.03) and display very high electron pair accepting characteristics (, α = 1.32; , α = 1.35). Molecular dynamics simulations suggest that the chelated lithium cation is responsible for this observation. The relatively small hydrogen bond acceptor (β) values for these systems (, β = 0.41; , β = 0.37) are thought to be due primarily to the TFSI anion, which is supplemented slightly by the glyme oxygen atom. In addition, these solvate ionic liquids are found to have a high polarisability (, π* = 0.94; , π* = 0.90).

Download full-text PDF

Source
http://dx.doi.org/10.1039/c6cp01216gDOI Listing

Publication Analysis

Top Keywords

solvate ionic
16
ionic liquids
16
kamlet-taft parameters
8
liquids high
8
determination kamlet-taft
4
parameters selected
4
solvate
4
selected solvate
4
ionic
4
liquids
4

Similar Publications

Achieving high ionic conductivity and stable performance at low temperatures remains a significant challenge in sodium-metal batteries (SMBs). In this study, we propose a novel electrolyte design strategy that elucidates the solvation structure-function relationship within mixed solvent systems. A mixture of diglyme and 1,3-dioxolane was developed to optimize the solvation structure towards superior low-temperature electrolyte.

View Article and Find Full Text PDF

Drug Property Optimization: Design, Synthesis, and Characterization of Novel Pharmaceutical Salts and Cocrystal-Salt of Lumefantrine.

Mol Pharm

January 2025

Department of Industrial and Molecular Pharmaceutics, College of Pharmacy, Purdue University, 575 Stadium Mall Drive, West Lafayette, Indiana 47907, United States.

Lumefantrine (LMF) is a low-solubility antimalarial drug that cures acute, uncomplicated malaria. It exerts its pharmacological effects against erythrocytic stages of spp. and prevents malaria pathogens from producing nucleic acid and protein, thereby eliminating the parasites.

View Article and Find Full Text PDF

Ion Networks in Water-based Li-ion Battery Electrolytes.

Acc Chem Res

January 2025

Center for Molecular Spectroscopy and Dynamics, Institute for Basic Science, Seoul 02841, Korea.

ConspectusWater-in-salt electrolytes (WiSEs) are promising electrolytes for next-generation lithium-ion batteries (LIBs), offering critical advantages like nonflammability and improved safety. These electrolytes have extremely high salt concentrations and exhibit unique solvation structures and transport mechanisms dominated by the formation of ion networks and aggregates. These ion networks are central to the performance of WiSEs, govern the transport properties and stability of the electrolyte, deviating from conventional dilute aqueous or organic electrolytes.

View Article and Find Full Text PDF

Extending the MST Model to Large Biomolecular Systems: Parametrization of the ddCOSMO-MST Continuum Solvation Model.

J Comput Chem

January 2025

Departament de Farmàcia i Tecnologia Farmacèutica, i Fisicoquímica, Facultat de Farmàcia i Ciències de l'Alimentació, Universitat de Barcelona (UB), Barcelona, Spain.

Continuum solvation models such as the polarizable continuum model and the conductor-like screening model are widely used in quantum chemistry, but their application to large biosystems is hampered by their computational cost. Here, we report the parametrization of the Miertus-Scrocco-Tomasi (MST) model for the prediction of hydration free energies of neutral and ionic molecules based on the domain decomposition formulation of COSMO (ddCOSMO), which allows a drastic reduction of the computational cost by several orders of magnitude. We also introduce several novelties in MST, like a new definition of atom types based on hybridization and an automatic setup of the cavity for charged regions.

View Article and Find Full Text PDF

Dual-Anion-Rich Polymer Electrolytes for High-Voltage Solid-State Lithium Metal Batteries.

ACS Nano

January 2025

Department of Physics, JC STEM Lab of Energy and Materials Physics, City University of Hong Kong, Hong Kong 999077, P. R. China.

Solid polymer electrolytes (SPEs) are promising candidates for lithium metal batteries (LMBs) owing to their safety features and compatibility with lithium metal anodes. However, the inferior ionic conductivity and electrochemical stability of SPEs hinder their application in high-voltage solid-state LMBs (HVSSLMBs). Here, a strategy is proposed to develop a dual-anion-rich solvation structure by implementing ferroelectric barium titanate (BTO) nanoparticles (NPs) and dual lithium salts into poly(vinylidene fluoride) (PVDF)-based SPEs for HVSSLMBs.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!