In the hematopoietic system, Syk family tyrosine kinases are essential components of immunoreceptor ITAM-based signaling. While there is increasing data indicating the involvement of immunoreceptors in neural functions, the contribution of Syk kinases remains obscure. Previously, we identified phosphorylated forms of Syk kinases in specialized populations of migrating neurons or projecting axons. Moreover, we identified ephrin/Eph as guidance molecules utilizing the ITAM-bearing CD3zeta (Cd247) and associated Syk kinases for the growth cone collapse response induced in vitro Here, we show that in the developing spinal cord, Syk is phosphorylated in navigating commissural axons. By analyzing axon trajectories in open-book preparations of Syk(-/-); Zap70(-/-) mouse embryos, we show that Syk kinases are dispensable for attraction towards the midline but confer growth cone responsiveness to repulsive signals that expel commissural axons from the midline. Known to serve a repulsive function at the midline, ephrin B3/EphB2 are obvious candidates for driving the Syk-dependent repulsive response. Indeed, Syk kinases were found to be required for ephrin B3-induced growth cone collapse in cultured commissural neurons. In fragments of commissural neuron-enriched tissues, Syk is in a constitutively phosphorylated state and ephrin B3 decreased its level of phosphorylation. Direct pharmacological inhibition of Syk kinase activity was sufficient to induce growth cone collapse. In conclusion, Syk kinases act as a molecular switch of growth cone adhesive and repulsive responses.

Download full-text PDF

Source
http://dx.doi.org/10.1242/dev.128629DOI Listing

Publication Analysis

Top Keywords

syk kinases
28
growth cone
20
cone collapse
12
syk
11
kinases required
8
commissural axons
8
kinases
7
commissural
5
growth
5
cone
5

Similar Publications

ITK-SYK and TEL-SYK (also known as ETV6-SYK) are human tumor-causing chimeric proteins containing the kinase region of SYK, and the membrane-targeting, N-terminal, PH-TH domain-doublet of ITK or the dimerizing SAM-PNT domain of TEL, respectively. ITK-SYK causes peripheral T cell lymphoma, while TEL-SYK was reported in myelodysplastic syndrome. BTK is a kinase highly related to ITK and to further delineate the role of the N-terminus, we generated the corresponding fusion-kinase BTK-SYK.

View Article and Find Full Text PDF

Circulatory age-associated B cells: Their distinct transcriptomic characteristics and clinical significance in drug-naïve patients with rheumatoid arthritis.

Clin Immunol

December 2024

Center for Integrative Rheumatoid Transcriptomics and Dynamics, The Catholic University of Korea, Seoul, Republic of Korea; Division of Rheumatology, Department of Internal Medicine, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea. Electronic address:

Age-associated B cells (ABCs) have been implicated in the pathogenesis of autoimmune diseases. However, the global gene expression and clinical significance of circulatory ABCs in rheumatoid arthritis (RA) remain poorly understood. Here, single-cell RNA sequencing identified nine B cell subsets in peripheral blood of RA patients, including ABCs.

View Article and Find Full Text PDF

Vaccine-induced immune thrombotic thrombocytopenia (VITT) is a rare but serious prothrombotic adverse event following vaccination with adenovector-based COVID-19 vaccines. Laboratory findings indicate that anti-platelet factor 4 (PF4) immunoglobulin G antibodies are the causing factor for the onset of thromboembolic events in VITT. However, molecular mechanisms of cellular interactions, signaling pathways and involvement of different cell types in VITT antibody-mediated thrombosis are not fully understood.

View Article and Find Full Text PDF

MYO1F positions cGAS on the plasma membrane to ensure full and functional signaling.

Mol Cell

January 2025

The Key Laboratory for Human Disease Gene Study of Sichuan Province and the Department of Laboratory Medicine, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, 611731 Chengdu, China; Sichuan Medical Laboratory Clinical Medical Research Center, Sichuan Provincial People's Hospital, 611731 Chengdu, China; Research Unit for Blindness Prevention of the Chinese Academy of Medical Sciences, Sichuan Academy of Medical Sciences and Sichuan Provincial People's Hospital, Chengdu, Sichuan, China; School of Medicine, University of Electronic Science and Technology of China, Chengdu, Sichuan 610054, China. Electronic address:

Cyclic guanosine monophosphate (GMP)-adenosine monophosphate (AMP) synthase (cGAS) detects viral or endogenous DNA, activating the innate immune response to infections and autoimmune diseases. Upon binding to double-stranded DNA, cGAS synthesizes 2'3' cGMP-AMP, which triggers type I interferon production. Besides its presence in the cytosol and nucleus, cGAS is found at the plasma membrane, although its significance remains unclear.

View Article and Find Full Text PDF

Following respiratory infection or injury, neutrophil hyperactivation can damage surrounding lung tissue by releasing harmful compounds. In this issue of the JCI, Moussavi-Harami and colleagues identified tyrosine phosphatase SHP1 as a key negative regulator of neutrophil activation in acute respiratory distress syndrome (ARDS). Neutrophil-specific Shp1 disruption leads to hyperinflammation, pulmonary hemorrhage, and increased mortality in both sterile and pathogen-induced acute lung injury (ALI).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!