Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Traumatic brain injury (TBI) involves primary and secondary injury cascades that underlie delayed neuronal dysfunction and death, leading to long‑term cognitive deficits, and effective therapeutic strategies targeting neuronal death remain elusive. The present study aimed to determine whether the administration of resveratrol (100 mg/kg) was able to significantly enhance functional recovery in a rat model of TBI and whether resveratrol treatment was able to upregulate synaptic protein expression and suppress post‑TBI neuronal autophagy. The results demonstrated that daily treatment with resveratrol attenuated TBI‑induced brain edema and improved spatial cognitive function and neurological impairment in rats. The expression of synaptic proteins was downregulated following TBI and this phenomenon was partly reversed by treatment with resveratrol. In addition, resveratrol was observed to significantly reduce the levels of the autophagic marker proteins, microtubule‑associated protein light chain 3‑II and Beclin1, in the hippocampus compared with the TBI group. Therefore, these results suggest that resveratrol may represent a novel therapeutic strategy for TBI, and that this protection may be associated with the upregulation of synaptophysin, postsynaptic density protein 95 and the suppression of neuronal autophagy.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.3892/mmr.2016.5201 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!