The Multiprotein bridge factor 2 (MBF2) gene was first identified as a co-activator involved in BmFTZ-F1-mediated activation of the Fushi tarazu gene. Herein, nine homologous genes of MBF2 gene are identified. Evolutionary analysis showed that this gene family is insect-specific and that the family members are closely related to response to pathogens (REPAT) genes. Tissue distribution analysis revealed that these genes could be expressed in a tissue-specific manner. Developmental profiles analysis showed that the MBF2 gene family members were highly expressed in the different stages. Analysis of the expression patterns of nine MBF2 family genes showed that Bacillus bombysepticus treatment induced the up-regulation of several MBF2 family genes, including MBF2-4, -7, -9, -8. Furthermore, we found the MBF2 family genes were modulated by starvation and the expression of these genes recovered upon re-feeding, except for MBF2-5, -9. These findings suggested roles for these proteins in insect defense against pathogens and nutrient metabolism, which has an important guiding significance for designing pest control strategies.

Download full-text PDF

Source
http://dx.doi.org/10.1111/1744-7917.12349DOI Listing

Publication Analysis

Top Keywords

mbf2 family
16
family genes
16
mbf2 gene
12
genes
8
bacillus bombysepticus
8
gene identified
8
gene family
8
family members
8
family
7
mbf2
6

Similar Publications

SfREPAT38, a pathogen response gene (REPAT), is involved in immune response of Spodoptera frugiperda larvae through mediating Toll signalling pathway.

Insect Mol Biol

August 2024

Guangxi Key Laboratory of Biology for Crop Diseases and Insect Pests, Guangxi Academy of Agricultural Sciences, Nanning, Guangxi Province, China.

REPAT (response to pathogen) is an immune-associated gene family that plays important roles in insect immune response to pathogens. Although nine REPAT genes have been identified in Spodoptera frugiperda (Lepidoptera: Noctuidae) currently, their functions and mechanisms in the immune response to pathogens still remain unclear. Therefore, SfREPAT38, a pathogen response gene (REPAT) of S.

View Article and Find Full Text PDF

Bombyx mori nucleopolyhedrovirus (BmNPV) is one of the primary pathogens that causes severe economic losses to sericulture. Comparative transcriptomics analysis has been widely applied to explore the antiviral mechanism in resistant strains. Here, to identify genes involved in BmNPV infection, we identified differentially expressed genes (DEGs) and performed weighted gene co-expression network analysis (WGCNA) between two Bombyx mori strains: strain 871 (susceptible to BmNPV infection) and the near-isogenic strain 871C (resistant to BmNPV).

View Article and Find Full Text PDF

Background: Entomopathogenic Beauveria bassiana has been used as a biocontrol agent for insect pests, but its effect at the molecular level on the hosts has not been studied in detail. Herein, we performed transcriptome analysis of bean bug, Riptortus pedestris (Hemiptera: Alydidae) in response to infection with a highly virulent strain of B. bassiana JEF-007 (Bb JEF-007).

View Article and Find Full Text PDF

The Multiprotein bridge factor 2 (MBF2) gene was first identified as a co-activator involved in BmFTZ-F1-mediated activation of the Fushi tarazu gene. Herein, nine homologous genes of MBF2 gene are identified. Evolutionary analysis showed that this gene family is insect-specific and that the family members are closely related to response to pathogens (REPAT) genes.

View Article and Find Full Text PDF

In this study, we have newly identified three bacteria-induced genes from the silkworm Bombyx mori by quantitative reverse transcriptase-polymerase chain reaction. One of these, eukaryotic initiation factor 4E-1 (eIF4E-1), is assumed to encode an eIF4E family, which plays a role in the initiation of translation as a mRNA cap-binding protein. The second gene is BmFOXG1, belonging to a family of forkhead transcription factors, FOXG1.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!