Cardiac surgery with cardiopulmonary bypass (CPB) is associated with blood loss and post-surgery thrombotic complications. The process of thrombin generation is disturbed during surgery with CPB because of haemodilution, coagulation factor consumption and heparin administration. We aimed to investigate the changes in thrombin generation during cardiac surgery and its underlying pro- and anticoagulant processes, and to explore the clinical consequences of these changes using in silico experimentation. Plasma was obtained from 29 patients undergoing surgery with CPB before heparinisation, after heparinisation, after haemodilution, and after protamine administration. Thrombin generation was measured and prothrombin conversion and thrombin inactivation were quantified. In silico experimentation was used to investigate the reaction of patients to the administration of procoagulant factors and/or anticoagulant factors. Surgery with CPB causes significant coagulation factor consumption and a reduction of thrombin generation. The total amount of prothrombin converted and the rate of prothrombin conversion decreased during surgery. As the surgery progressed, the relative contribution of α2-macroglobulin-dependent thrombin inhibition increased, at the expense of antithrombin-dependent inhibition. In silico restoration of post-surgical prothrombin conversion to pre-surgical levels increased thrombin generation excessively, whereas co-administration of antithrombin resulted in the normalisation of post-surgical thrombin generation. Thrombin generation is reduced during surgery with cardiopulmonary bypass because of a balance shift between prothrombin conversion and thrombin inactivation. According to in silico predictions of thrombin generation, this new balance increases the risk of thrombotic complications with prothrombin complex concentrate administration, but not if antithrombin is co-administered.

Download full-text PDF

Source
http://dx.doi.org/10.1160/TH16-02-0094DOI Listing

Publication Analysis

Top Keywords

thrombin generation
32
prothrombin conversion
20
cardiac surgery
12
surgery cardiopulmonary
12
cardiopulmonary bypass
12
surgery cpb
12
thrombin
11
surgery
9
thrombotic complications
8
generation
8

Similar Publications

Available evidence suggests that various medical/rehabilitation treatments evoke multiple effects on blood hemostasis. It was therefore the aim of our study to examine whether fascial manipulation, vibration exercise, motor imagery, or neuro-muscular electrical stimulation can activate the coagulation system, and, thereby, expose patients to thrombotic risk. Ten healthy young subject were enrolled in the study.

View Article and Find Full Text PDF

Sensitive detection of disease-specific biomarkers with high accuracy is crucial for early diagnosis, therapeutic monitoring, and understanding underlying pathological mechanisms. Traditional methods, such as immunohistochemistry and enzyme-linked immunosorbent assays (ELISA), face limitations due to the complex and expensive production of antibodies. In this context, aptamers, short oligonucleotides with advantages like easy synthesis, low cost, high specificity, and stability, have emerged as promising alternatives for biomolecular sensing.

View Article and Find Full Text PDF

Introduction: Cardiogenic arterial thromboembolism (CATE) is a life-threatening complication of hypertrophic cardiomyopathy (HCM) with a high mortality rate. As the primary responders in hemostasis, platelets play a crucial role in the progression of CATE. Procoagulant platelets are a subpopulation of activated platelets that facilitate thrombin generation to strengthen thrombus structure.

View Article and Find Full Text PDF

Objectives: To assess the effect of treatment on haemostatic parameters in patients with early rheumatoid arthritis (RA).

Methods: Patients with newly diagnosed RA started methotrexate and were randomised to additional conventional treatment, certolizumab pegol, abatacept or tocilizumab. Several biomarkers for haemostasis were analysed including parameters of the two global haemostatic assays-overall haemostatic potential (OHP) and endogenous thrombin potential (ETP), as well as single haemostatic factors-fibrinogen, prothrombin fragment 1+2 (F1+2), D-dimer, thrombin activatable fibrinolysis inhibitor (TAFI) and clot lysis time (CLT) in 24 patients at baseline, 12 and 24 weeks after the start of the treatment.

View Article and Find Full Text PDF

Photochemically triggered, transient, and temporally oscillatory-modulated transcription machineries are introduced. The resulting dynamic transcription circuits are implemented to guide photochemically triggered, transient, and oscillatory modulation of thrombin toward temporal control over fibrinogenesis. One system describes the assembly of a reaction module leading to the photochemically triggered formation of an active transcription machinery that, in the presence of RNase H, guides the transient activation of thrombin toward fibrinogenesis.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!