Macrophages are important in inflammation through the production of various proinflammatory mediators. β‑glucan is a polymer of glucose, which is produced by numerous different organisms, including fungi, and acts as a trigger for the induction of inflammatory responses. Tetrandrine (TET), a bis‑benzylisoquinoline alkaloid isolated from the Chinese herb Radix Stephania tetrandra, has been demonstrated to modulate inflammatory responses. In the present study, it was investigated whether TET affects the inflammatory reaction induced by β‑glucan in murine and human macrophages. It was demonstrated that β‑glucan induced the activation of nuclear factor (NF)‑κB and markedly increased the levels of tumor necrosis factor‑α (TNF‑α) and interleukin 1 β (IL‑1β) in macrophages. Treatment with TET resulted in downregulation of phosphorylated NF‑κB p65 and reduction of the production of TNF‑α and IL‑1β. In addition, the phosphorylation of ERK and STAT3 was decreased by TET in activated macrophages. Furthermore, it was demonstrated that the inhibitory effects of TET on β‑glucan‑induced macrophage activation was not due to its cytotoxic action. Conclusively, these results indicate that TET can decrease the inflammatory responses mediated by β‑glucan in macrophages. Thus, TET may serve as an effective tool for the treatment of β‑glucan‑associated inflammatory diseases.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.3892/mmr.2016.5187 | DOI Listing |
Cardiovasc Toxicol
January 2025
Department of Cadre Ward, The First Affiliated Hospital of Harbin Medical University, No. 23, Postal Street, Harbin, 150001, Heilongjiang, PR China.
Atherosclerosis risk is elevated in diabetic patients, but the underlying mechanism such as the involvement of macrophages remains unclear. Here, we investigated the underlying mechanism related to the pro-inflammatory activation of macrophages in the development of diabetic atherosclerosis. Bioinformatics tools were used to analyze the macrophage-related transcriptome differences in patients with atherosclerosis and diabetic mice.
View Article and Find Full Text PDFJ Infect Dev Ctries
December 2024
Students' Research Committee, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran.
Introduction: Inflammation plays a role in coronavirus disease 2019 (COVID-19) pathophysiology and anti-inflammatory drugs may help reduce the disease severity. Levamisole is an anthelmintic drug with immunomodulatory and possible antiviral effects. This study aimed to evaluate the role of levamisole in the treatment of patients with COVID-19.
View Article and Find Full Text PDFJ Infect Dev Ctries
December 2024
Intensive Care Unit, Columbia Asia Hospital, Semarang, Indonesia.
Introduction: Hemoperfusion (HP), a blood filtration method targeting the removal of toxins and inflammatory elements, was investigated in this study. The objective was to present the observations in four individuals with confirmed COVID-19 who underwent several rounds of HP utilizing the HA330 cartridge at a hospital in Indonesia.
Case Studies: We report four cases of COVID-19 patients who underwent HP.
Semin Immunopathol
January 2025
Institute for Clinical Chemistry and Laboratory Medicine, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Fetscherstrasse 74, 01307, Dresden, Germany.
Metabolic flexibility is key for the function of myeloid cells. Arginine metabolism is integral to the regulation of myeloid cell responses. Nitric oxide (NO) production from arginine is vital for the antimicrobial and pro-inflammatory responses.
View Article and Find Full Text PDFSci Rep
January 2025
Department of Biomedical Engineering, University of Rochester, Rochester, NY, USA.
The aberrant vascular response associated with tendon injury results in circulating immune cell infiltration and a chronic inflammatory feedback loop leading to poor healing outcomes. Studying this dysregulated tendon repair response in human pathophysiology has been historically challenging due to the reliance on animal models. To address this, our group developed the human tendon-on-a-chip (hToC) to model cellular interactions in the injured tendon microenvironment; however, this model lacked the key element of physiological flow in the vascular compartment.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!