Green Catalytic Process for Cyclic Carbonate Synthesis from Carbon Dioxide under Mild Conditions.

Chem Rec

State Key Laboratory and Institute of Elemento-Organic Chemistry, Nankai University, Tianjin 300071, P. R. China.

Published: June 2016

As a renewable and abundant C1 resource possessing multiple attractive characteristics, such as low cost, nontoxicity, non-flammability, and easy accessibility, CO2 conversion into value-added chemicals and fuels can contribute to green chemistry and sustainable development. Since CO2 is a thermodynamically inert molecule, the activation of CO2 is pivotal for its effective conversion. In this regard, the formation of a transition-metal CO2 complex through direct coordination is one of the most powerful ways to induce the inert CO2 molecule to undergo chemical reactions. To date, numerous processes have been developed for efficient synthesis of cyclic carbonates from CO2 . On the basis of mechanistic understanding, we have developed efficient metal catalysts and green processes, including heterogeneous catalysis, and metal-free systems, such as ionic liquids, for cyclic carbonate synthesis. The big challenge is to develop catalysts that promote the reaction under low pressure (preferably at 1 bar). In this context, bifunctional catalysis is capable of synergistic activation of both the substrate and CO2 molecule, and thus, could render CO2 conversion smoothly under mild conditions. Alternatively, converting CO2 derivatives, that is, the captured CO2 as an activated species, would more easily take place at low pressure in comparison with gaseous CO2 . The aim of this Personal Account is to summarize versatile catalytic processes for cyclic carbonate synthesis from CO2 , including epoxide/CO2 coupling reaction, carboxylation of 1,2-diol with CO2 , oxidative cyclization of olefins with CO2 , condensation of vicinal halohydrin with CO2 , carboxylative cyclization of propargyl alcohols with CO2 , and conversion of the CO2 derivatives.

Download full-text PDF

Source
http://dx.doi.org/10.1002/tcr.201500293DOI Listing

Publication Analysis

Top Keywords

co2
17
cyclic carbonate
12
carbonate synthesis
12
co2 conversion
12
mild conditions
8
co2 molecule
8
developed efficient
8
low pressure
8
co2 derivatives
8
green catalytic
4

Similar Publications

To address the limitations of polymeric membranes, mixed matrix membranes for CO separation from biogas mixtures (CO and CH) have been investigated utilizing various fillers. In this study, we investigated novel MMMs using 3D and 2D indium-based MOFs, MIL-68(In)-NH and In(aip), in a polysulfone polymer matrix. To confirm synthesis, both fillers were subjected to XRD and FTIR analysis, as well as FESEM characterization to assess their 2D and 3D structures.

View Article and Find Full Text PDF

Unlabelled: is to demonstrate the effect of fractional CO laser treatment on vulvar skin in lichen sclerosus using multimodal optical coherence tomography (MM OCT).

Materials And Methods: The study included 3 clinical cases of vulvar lichen sclerosus (VLS) (histologically classified as early, early with dermal edema, late) and 2 control cases without vulvar pathology. Patients with VLS underwent 3 procedures of fractional CO laser treatment with an interval of 30-40 days.

View Article and Find Full Text PDF

Synchronously degradation of biogas slurry and decarbonization of biogas using microbial fuel cells.

J Environ Sci Health A Tox Hazard Subst Environ Eng

January 2025

School of Environmental Engineering, Faculty of Environmental and Safety Engineering, Qingdao University of Science and Technology, Qingdao, China.

Two-chamber microbial fuel cell (MFC) with biogas slurry (BS) of corn stover as the anode substrate and as the cathode substrate was investigated to solve the problem of the accumulation of wastewater generated from biogas plants and to achieve low-cost separation of CO from biogas. A simple two-compartment MFC was constructed using biocatalysis and inexpensive materials without expensive catalysts. The performance of MFC (X1-W, Y1-W, Z1-W) with different biogas solution concentrations as anode substrate and MFC (X2-C, Y2-C, Z2-C) with as biocathode were compared, respectively.

View Article and Find Full Text PDF

Selective Liquid Chemical Production in Waste Polyolefin Photorefinery by Controlling Reactive Species.

J Am Chem Soc

January 2025

Institute of Functional Nano and Soft Materials (FUNSOM), Jiangsu Key Laboratory of Advanced Negative Carbon Technologies, Soochow University, 199 Ren'ai Road, Suzhou, Jiangsu 215123, China.

Photocatalytic upcycling of waste polyolefins into value-added chemicals provides promise in plastic waste management and resource utilization. Previous works demonstrate that polyolefins can be converted into carboxylic acids, with CO as the final oxidation product. It is still challenging to explore more transformation products, particularly mild-oxidation products such as alcohols, because of their instability compared with polymer substrates, which are prone to oxidation during catalytic reactions.

View Article and Find Full Text PDF

The adoption of carbon capture, utilization, and storage (CCUS) technology is increasingly prevalent, driven by the global initiative to conserve energy and reduce emissions. Nevertheless, CCUS has the potential to induce corrosion in equipment, particularly in high-pressure environments containing carbon dioxide (CO). Therefore, anti-corrosion protection is necessary for the metal utilized for CO production and storage equipment.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!