Manipulating the Hippo-Yap signal cascade in stem cells for heart regeneration.

Ann Palliat Med

Department of Pathology & Lab Medicine, University of Cincinnati, Cincinnati, OH 45267-0575, USA.

Published: April 2016

The Hippo-Yap pathway was originally recognized as a crucial signal cascade controlling organ size, and more recently identified as an important component involved in the regulation of cardiomyocyte survival, proliferation, and regeneration. Negative stress responses can activate mammalian sterile 20-like kinase 1 (Mst1) to suppress protective autophagy and promote cardiomyocyte apoptosis via phosphorylation and inhibition of Bcl-xL. Moreover, decreased Yap activity and nuclear entry will decrease upon Mst1 activation, ultimately suppressing cardiomyocytes proliferation and regeneration. Based on these observations, there are potential therapeutic opportunities in cardiac structural and functional regeneration post myocardium infarction to be gained by manipulation of the Hippo-Yap signal cascade. This review will summarize the main components of the Hippo-Yap pathway and their molecular biological functions. It will then highlight the role of these signal modules in the acquisition of stem cell pluripotency, cardiogenic differentiation, cardiomyocyte proliferation and maturation, and mitochondrial biogenesis in cardiac stem cells. Finally, it will discuss the potential for future studies of Hippo-Yap pathway using induced pluripotent stem cell (iPSC) technology.

Download full-text PDF

Source
http://dx.doi.org/10.21037/apm.2016.03.03DOI Listing

Publication Analysis

Top Keywords

signal cascade
12
hippo-yap pathway
12
hippo-yap signal
8
stem cells
8
proliferation regeneration
8
stem cell
8
manipulating hippo-yap
4
signal
4
stem
4
cascade stem
4

Similar Publications

Enhancing immunotherapy efficacy in colorectal cancer: targeting the FGR-AKT-SP1-DKK1 axis with DCC-2036 (Rebastinib).

Cell Death Dis

January 2025

The First Affiliated Hospital, Cancer Research Institute, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, PR China.

This research demonstrates that DCC-2036 (Rebastinib), a potent third-generation tyrosine kinase inhibitor (TKI), effectively suppresses tumor growth in colorectal cancer (CRC) models with functional immune systems. The findings underscore the capacity of DCC-2036 to enhance both the activation and cytotoxic functionality of CD8 T cells, which are crucial for facilitating anti-tumor immune responses. Through comprehensive multi-omics investigations, significant shifts in both gene and protein expression profiles were detected, notably a marked decrease in DKK1 levels.

View Article and Find Full Text PDF

DNAzyme assisted single amplification for FEN1 activity detection using a personal glucose meter.

Anal Chim Acta

January 2025

MOE Key Laboratory for Analytical Science of Food Safety and Biology, Fujian Provincial Key Laboratory of Analysis and Detection Technology for Food Safety, College of Chemistry, Fuzhou University, Fuzhou, 350116, PR China. Electronic address:

Flap endonuclease 1 (FEN1) plays a vital role in cancer by modulating DNA repair mechanisms, inducing genomic instability, and serving as a promising biomarker for cancer diagnosis and prognosis. In this work, we present the development of a novel DNAzyme signal amplification-directed point-of-care sensing system (Dz-PGM) for the sensitive and specific detection of FEN1. The Dz-PGM system utilizes DNAzyme signal amplification in conjunction with a personal glucose meter (PGM) for reporting, capitalizing on a biochemical cascade initiated by FEN1 recognition.

View Article and Find Full Text PDF

Deep proximal gradient network for absorption coefficient recovery in photoacoustic tomography.

Phys Med Biol

January 2025

North China Electric Power University - Baoding Campus, North China Electric Power University, Baoding, Hebei Province, P.R.China, Baoding, Hebei, 071003, CHINA.

Objective: The optical absorption properties of biological tissues in photoacoustic tomography are typically quantified by inverting acoustic measurements. Conventional approaches to solving the inverse problem of forward optical models often involve iterative optimization. However, these methods are hindered by several challenges, including high computational demands, the need for regularization, and sensitivity to both the accuracy of the forward model and the completeness of the measurement data.

View Article and Find Full Text PDF

ACNO hydrogel enhances diabetic wound healing by modulating the Bcl-2/Bax/Caspase-3/PARP pathway.

Int Immunopharmacol

January 2025

College of Pharmacy, Zunyi Medical University, Zunyi 563006, China; Key Lab of the Basic Pharmacology of the Ministry of Education & Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi 563006, China. Electronic address:

Centella asiatica (L.) Urban, one of the authentic medicinal materials from Guizhou Province in China, has been traditionally applied for the treatment of contusions and fractures, as well as for promoting wound healing. Preliminary research suggests that asiaticoside-nitric oxide hydrogel (ACNO) exhibits the potential to enhance the healing of diabetic wounds (DWs); however, the underlying molecular mechanisms require further elucidation.

View Article and Find Full Text PDF

Lighting Up Dual-Aptamer-Based DNA Logic-Gated Series Lamp Probes with Specific Membrane Proteins for Sensitive and Accurate Cancer Cell Identification.

Anal Chem

January 2025

Key Laboratory of Laboratory Medicine, Ministry of Education, Zhejiang Provincial Key Laboratory of Medical Genetics, Cixi Biomedical Research Institute, School of Laboratory Medicine and Life sciences, Wenzhou Medical University, Wenzhou 325035, China.

Accurate identification of cancer cells under complex physiological environments holds great promise for noninvasive diagnosis and personalized medicine. Herein, we developed dual-aptamer-based DNA logic-gated series lamp probes (Apt-SLP) by coupling a DNA cell-classifier (DCC) with a self-powered signal-amplifier (SSA), enabling rapid and sensitive identification of cancer cells in a blood sample. DCC is endowed with two extended-aptamer based modules for recognizing the two cascade cell membrane receptors and serves as a DNA logic gate to pinpoint a particular and narrow subpopulation of cells from a larger population of similar cells.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!