Cardiac Fibro-Adipocyte Progenitors Express Desmosome Proteins and Preferentially Differentiate to Adipocytes Upon Deletion of the Desmoplakin Gene.

Circ Res

From the Center for Cardiovascular Genetics, Institute of Molecular Medicine and Department of Medicine, University of Texas Health Science Center at Houston (R.L., S.N.C., A.R., P.G., G.Z.C., A.J.M.); and Department of Medicine, Texas Heart Institute, Houston (J.T.W.).

Published: June 2016

Rationale: Mutations in desmosome proteins cause arrhythmogenic cardiomyopathy (AC), a disease characterized by excess myocardial fibroadipocytes. Cellular origin(s) of fibroadipocytes in AC is unknown.

Objective: To identify the cellular origin of adipocytes in AC.

Methods And Results: Human and mouse cardiac cells were depleted from myocytes and flow sorted to isolate cells expressing platelet-derived growth factor receptor-α and exclude those expressing other lineage and fibroblast markers (CD32, CD11B, CD45, Lys76, Ly(-6c) and Ly(6c), thymocyte differentiation antigen 1, and discoidin domain receptor 2). The PDGFRA(pos):Lin(neg):THY1(neg):DDR2(neg) cells were bipotential as the majority expressed collagen 1 α-1, a fibroblast marker, and a subset CCAAT/enhancer-binding protein α, a major adipogenic transcription factor, and therefore, they were referred to as fibroadipocyte progenitors (FAPs). FAPs expressed desmosome proteins, including desmoplakin, predominantly in the adipogenic but not fibrogenic subsets. Conditional heterozygous deletion of Dsp in mice using Pdgfra-Cre deleter led to increased fibroadipogenesis in the heart and mild cardiac dysfunction. Genetic fate mapping tagged 41.4±4.1% of the cardiac adipocytes in the Pdgfra-Cre:Eyfp:Dsp(W/F) mice, indicating an origin from FAPs. FAPs isolated from the Pdgfra-Cre:Eyfp:Dsp(W/F) mouse hearts showed enhanced differentiation to adipocytes. Mechanistically, deletion of Dsp was associated with suppressed canonical Wnt signaling and enhanced adipogenesis. In contrast, activation of the canonical Wnt signaling rescued adipogenesis in a dose-dependent manner.

Conclusions: A subset of cardiac FAPs, identified by the PDGFRA(pos):Lin(neg):THY1(neg):DDR2(neg) signature, expresses desmosome proteins and differentiates to adipocytes in AC through a Wnt-dependent mechanism. The findings expand the cellular spectrum of AC, commonly recognized as a disease of cardiac myocytes, to include nonmyocyte cells in the heart.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4920717PMC
http://dx.doi.org/10.1161/CIRCRESAHA.115.308136DOI Listing

Publication Analysis

Top Keywords

desmosome proteins
16
faps faps
8
deletion dsp
8
canonical wnt
8
wnt signaling
8
cardiac
6
adipocytes
5
faps
5
cardiac fibro-adipocyte
4
fibro-adipocyte progenitors
4

Similar Publications

Identification of Biomarkers of Arrhythmogenic Cardiomyopathy (ACM) by Plasma Proteomics.

Medicina (Kaunas)

January 2025

Service de Cardiologie Pédiatrique, Hôpital la Rabta Tunis, Tunis 1007, Tunisia.

The pathophysiology of arrhythmogenic cardiomyopathy (ACM), previously known as arrhythmogenic right ventricular cardiomyopathy (ARVC), and its specific biological features remain poorly understood. High-throughput plasma proteomic profiling, a powerful tool for gaining insights into disease pathophysiology at the systems biology level, has not been used to study ACM. This study aimed at characterizing plasmatic protein changes in patients with ACM, which were compared with those of healthy controls, and at exploring the potential role of the identified proteins as biomarkers for diagnosis and monitoring.

View Article and Find Full Text PDF

The epithelial and mesenchymal features of colorectal adenocarcinoma (CRAC) cell lines were compared in two-dimensional (2D) and three-dimensional (3D) cultures. In 2D cultures, the three CRAC cell lines exhibited epithelial characteristics with high E-cadherin and low vimentin levels, whereas two exhibited mesenchymal traits with opposite expression patterns. In 3D cultures using low-attachment plates, mesenchymal cells from 2D cultures showed reduced vimentin mRNA levels.

View Article and Find Full Text PDF

Pemphigus is a group of autoimmune bullous diseases mediated by autoantibodies most often of the immunoglobulin G class, subclasses immunoglobulin G1, and immunoglobulin G4 (IgG4), directed against desmosomal adhesion proteins of keratinocytes. This study aimed to evaluate IgG4 immunoreactivity on paraffin sections using immunohistochemistry in patients with pemphigus as a diagnostic test. Fifty formalin-fixed paraffin-embedded specimens from patients with pemphigus were selected.

View Article and Find Full Text PDF

Background: Cardiac sarcoidosis (CS) is a chronic inflammatory disease characterised by non-caseating granulomas, while arrhythmogenic cardiomyopathy (ACM) is a genetic condition mainly affecting desmosomal proteins. The coexistence of CS and genetic variants associated with ACM is not well understood, creating challenges in diagnosis and management. This study aimed to describe the clinical, imaging and genetic features of patients with both conditions.

View Article and Find Full Text PDF

Hot Phases Cardiomyopathy: Pathophysiology, Diagnostic Challenges, and Emerging Therapies.

Curr Cardiol Rep

January 2025

Center for Diagnosis and Treatment of Cardiomyopathies, Cardiovascular Department, Azienda Sanitaria Universitaria Giuliano Isontina (ASUGI), European Reference Network for Rare, University of Trieste, Via P. Valdoni 7, 34100, Trieste, Italy.

Purpose Of Review: Hot phases are a challenging clinical presentation in arrhythmogenic cardiomyopathy (ACM), marked by acute chest pain and elevated cardiac troponins in the absence of obstructive coronary disease. These episodes manifest as myocarditis and primarily affect young patients, contributing to a heightened risk of life-threatening arrhythmias and potential disease progression. This review aims to synthesize recent research on the pathophysiology, diagnostic challenges, and therapeutic management of hot phases in ACM.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!