Corticostriatal cocultures are utilized to recapitulate the cortex-striatum connection in vitro as a convenient model to investigate the development, function, and regulation of synapses formed between cortical and striatal neurons. However, optimization of this dissociated neuronal system to more closely reproduce in vivo circuits has not yet been explored. We studied the effect of varying the plating ratio of cortical to striatal neurons on striatal spiny projection neuron (SPN) characteristics in primary neuronal cocultures. Despite the large difference in cortical-striatal neuron ratio (1:1 vs. 1:3) at day of plating, by 18 days in vitro the difference became modest (∼25% lower cortical-striatal neuron ratio in 1:3 cocultures) and the neuronal density was lower in the 1:3 cocultures, indicating enhanced loss of striatal SPNs. Comparing SPNs in cocultures plated at a 1:1 vs. 1:3 ratio, we found that resting membrane potential, input resistance, current injection-induced action potential firing rates, and input-output curves were similar in the two conditions. However, SPNs in the cocultures plated at the lower cortical ratio exhibited reduced membrane capacitance along with significantly shorter total dendritic length, decreased dendritic complexity, and fewer excitatory synapses, consistent with their trend toward reduced miniature excitatory postsynaptic current frequency. Strikingly, the proportion of NMDA receptors found extrasynaptically in recordings from SPNs was significantly higher in the less cortical coculture. Consistently, SPNs in cocultures with reduced cortical input showed decreased basal pro-survival signaling through cAMP response element binding protein and enhanced sensitivity to NMDA-induced apoptosis. Altogether, our study indicates that abundance of cortical input regulates SPN dendritic arborization and survival/death signaling.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4969384 | PMC |
http://dx.doi.org/10.1152/jn.00933.2015 | DOI Listing |
Front Cell Neurosci
February 2021
Centre for Applied Neurogenetics (CAN), University of British Columbia, Vancouver, BC, Canada.
In contrast to the prenatal topographic development of sensory cortices, striatal circuit organization is slow and requires the functional maturation of cortical and thalamic excitatory inputs throughout the first postnatal month. While mechanisms regulating synapse development and plasticity are quite well described at excitatory synapses of glutamatergic neurons in the neocortex, comparatively little is known of how this translates to glutamate synapses onto GABAergic neurons in the striatum. Here we investigate excitatory striatal synapse plasticity in an system, where glutamate can be studied in isolation from dopamine and other neuromodulators.
View Article and Find Full Text PDFJ Huntingtons Dis
April 2021
Department of Psychiatry and Djavad Mowafaghian Centre for Brain Health, The University of British Columbia, Vancouver, Canada.
Background: Huntington's disease (HD) is an inherited neurodegenerative disorder caused by expansion of CAG repeats in the Huntingtin gene (HTT). Studies suggest cortical to striatal (C-S) projections, which regulate movement and provide cell survival signals to SPNs, are altered in the pre-manifest and early symptomatic stages of HD. But whether and how presynaptic cortical terminals are affected in HD is not well explored.
View Article and Find Full Text PDFJ Neurophysiol
August 2016
Department of Psychiatry and Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, Canada; and
Corticostriatal cocultures are utilized to recapitulate the cortex-striatum connection in vitro as a convenient model to investigate the development, function, and regulation of synapses formed between cortical and striatal neurons. However, optimization of this dissociated neuronal system to more closely reproduce in vivo circuits has not yet been explored. We studied the effect of varying the plating ratio of cortical to striatal neurons on striatal spiny projection neuron (SPN) characteristics in primary neuronal cocultures.
View Article and Find Full Text PDFJ Biol Chem
February 2014
From the Department of Psychiatry and Brain Research Centre, University of British Columbia, Vancouver, British Columbia V6T 1Z3 and.
Huntington disease is associated with early alterations in corticostriatal synaptic function that precede cell death, and it is postulated that ameliorating such changes may delay clinical onset and/or prevent neurodegeneration. Although many of these synaptic alterations are thought to be attributable to a toxic gain of function of the mutant huntingtin protein, the role that nonpathogenic huntingtin (HTT) plays in synaptic function is relatively unexplored. Here, we compare the immunocytochemical localization of a major postsynaptic scaffolding protein, PSD-95, in striatal neurons from WT mice and mice overexpressing HTT with 18 glutamine repeats (YAC18, nonpathogenic).
View Article and Find Full Text PDFJ Neurosci
December 1990
Department of Biology, University of Michigan, Ann Arbor 48109.
The influence of non-neuronal cells and interneurons on the morphological development of chick sympathetic preganglionic neurons (SPNs) and on the responsiveness of these neurons to the neurotransmitters GABA, glycine, and glutamate was studied. SPNs were retrogradely labeled with the fluorescent dyes dil and diO, then separated from spinal-cord non-neuronal cells and interneurons by fluorescence-activated cell sorting. SPNs were grown in culture, either alone or in coculture with non-neuronal cells alone, with interneurons alone, or with both of these cell types (control cultures).
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!