A new facile, rapid, inexpensive, and sensitive method for the analysis of six trace trichlorophenols in seawater samples was developed by magnetic micro-solid-phase extraction coupled to liquid chromatography with tandem mass spectrometry. Core-shell covalently functionalized ferroferric oxide coated with aminated silicon dioxide and decorated with multiwalled carbon nanotubes was applied as an adsorbent to perform the extraction process. The effect of factors including solution pH, contact time, adsorbent amount, and ionic strength were investigated in detail. The obtained results revealed that the proposed adsorbent was a highly effective and low-cost magnetic micro-solid-phase extraction material for the enrichment of 2,3,4-trichlorophenol, 2,3,5-trichlorophenol, 2,3,6-trichlorophenol, 2,4,5-trichlorophenol, 2,4,6-trichlorophenol, and 3,4,5-trichlorophenol from seawater. Under the optimized conditions, the recoveries ranged from 88.0 to 99.5% at the three spiking levels, the limits of detection and the limits of quantification were 0.002 and 0.007 μg/L for the six trichlorophenols, respectively. The intra- and interday relative standard deviations were 2.0-6.7 and 4.5-8.9%, respectively. The calibration curves showed a good linearity in the range of 0.02-5.0 μg/L. The routine run analyses showed that the developed method was fast, simple, accurate, solvent-saving and high resolution, and it was suitable for the determination of trace trichlorophenols in seawater.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/jssc.201600204 | DOI Listing |
Environ Sci Technol
November 2023
Department of Environmental Medicine and Public Health, Icahn School of Medicine at Mount Sinai, New York, New York 10029, United States.
A growing body of literature suggests that developmental exposure to individual or mixtures of environmental chemicals (ECs) is associated with autism spectrum disorder (ASD). However, investigating the effect of interactions among these ECs can be challenging. We introduced a combination of the classical exposure-mixture Weighted Quantile Sum (WQS) regression and a machine-learning method termed Signed iterative Random Forest (SiRF) to discover synergistic interactions between ECs that are (1) associated with higher odds of ASD diagnosis, (2) mimic toxicological interactions, and (3) are present only in a subset of the sample whose chemical concentrations are higher than certain thresholds.
View Article and Find Full Text PDFJ Chromatogr A
March 2023
Ministry of Education Key Laboratory for Analytical Science of Food Safety and Biology, Fujian Province Key Laboratory of Analysis and Detection Technology for Food Safety, College of Chemistry, Fuzhou University, Fuzhou, Fujian 350116, China. Electronic address:
Conductive covalent organic frameworks (COFs) have received considerable attention and are critical in various applications such as electro-enhanced solid-phase microextraction (EE-SPME). In this work, a novel piperazine-linked copper-doped phthalocyanine metal covalent organic framework (CuPc-MCOF) was synthesized with good stability and high electrical conductivity. The synthesized CuPc-MCOF was then used as an EE-SPME coating material for extraction of five trace chlorophenols (CPs), including 2,4-dichlorophenol (2,4-DCP), 2,6-dichlorophenol (2,6-DCP), 2,4,6-trichlorophenol (2,4,6-TCP), 2,4,5-trichlorophenol (2,4,5-TCP) and 2,4,5,6-tetrachlorophenol (2,4,5,6-TCP), exhibiting excellent extraction performance because of various synergistic forces between CuPc-MCOF fibers and CPs.
View Article and Find Full Text PDFChemosphere
January 2022
University of Chinese Academy of Sciences, Beijing, 100049, China; Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China. Electronic address:
The frequent detection of phenols and indoles in source water gives rise to concern about the taste and odor problems mainly caused by some chemicals. Exploration for the efficient removal of trace amounts of phenols and indoles in source water is imperative. This study investigated the removals and oxidation kinetics of 3-methylphenol (3-MP), 2,6-dichlorophenol (2,6-DCP), indole and 3-methylindole (3-MI) by NaClO and KMnO.
View Article and Find Full Text PDFTalanta
February 2021
Department of Chemistry, Memorial University of Newfoundland, St. John's, NL, A1B 3X7, Canada. Electronic address:
A porous water-compatible molecularly imprinted polymer (MIP) coating using catechol as a pseudo-template and a water-soluble functional monomer (4-vinyl benzoic acid) with ethylene glycol dimethacrylate as the crosslinker was developed for extraction of phenols from environmental water samples. The MIP devices were combined with ultra high performance liquid chromatography with a photodiode array detector (UHPLC-PDA) suitable for the simultaneous determination of trace levels of phenolic compounds with a wide range of polarities -phenol, alkylphenols and chlorophenols- in seawater and produced water. Parameters that influence extraction efficiency (salinity, pH, polymer mass, desorption solvent, and desorption time) were optimized to give method detection limits (LOD) ranging from 0.
View Article and Find Full Text PDFSpectrochim Acta A Mol Biomol Spectrosc
February 2021
School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, China. Electronic address:
As an important environmental indicator, 2,4,6-trichlorophenol (2,4,6-TCP) was proved extremely harmful to human body. In this article, hollow molecularly imprinted fluorescent polymers (@MIPs) for the selective detection of 2,4,6-TCP were devised and fabricated by sacrificial skeleton method based on SiO nanoparticles. As the most innovation, highly luminescent europium complex Eu(MAA)phen played the role of both fluorophores and functional monomers of the MIPs.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!