Experimental evidence of coherent transport.

Sci Rep

Instituto de Ciencias Físicas, Universidad Nacional Autónoma de México, Apartado Postal 48-3, 62210 Cuernavaca Mor., Mexico.

Published: April 2016

Coherent transport phenomena are difficult to observe due to several sources of decoherence. For instance, in the electronic transport through quantum devices the thermal smearing and dephasing, the latter induced by inelastic scattering by phonons or impurities, destroy phase coherence. In other wave systems, the temperature and dephasing may not destroy the coherence and can then be used to observe the underlying wave behaviour of the coherent phenomena. Here, we observe coherent transmission of mechanical waves through a two-dimensional elastic Sinai billiard with two waveguides. The flexural-wave transmission, performed by non-contact means, shows the quantization when a new mode becomes open. These measurements agree with the theoretical predictions of the simplest model highlighting the universal character of the transmission fluctuations.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4848564PMC
http://dx.doi.org/10.1038/srep25157DOI Listing

Publication Analysis

Top Keywords

coherent transport
8
experimental evidence
4
coherent
4
evidence coherent
4
transport coherent
4
transport phenomena
4
phenomena difficult
4
difficult observe
4
observe sources
4
sources decoherence
4

Similar Publications

Most current highly efficient organic solar cells utilize small molecules like Y6 and its derivatives as electron acceptors in the photoactive layer. In this work, a small molecule acceptor, SC8-IT4F, is developed through outer side chain engineering on the terminal thiophene of a conjugated 6,12-dihydro-dithienoindeno[2,3-d:2',3'-d']-s-indaceno[1,2-b:5,6-b']dithiophene (IDTT) central core. Compared to the reference molecule C8-IT4F, which lacks outer side chains, SC8-IT4F displays notable differences in molecule geometry (as shown by simulations), thermal behavior, single-crystal packing, and film morphology.

View Article and Find Full Text PDF

Quantum Dynamics Simulations of Exciton Polariton Transport.

Nano Lett

January 2025

Department of Chemistry, University of Rochester, Rochester, New York 14627, United States.

Recent experiments have shown that exciton transport can be significantly enhanced through hybridization with confined photonic modes in a cavity. The light-matter hybridization generates exciton-polariton (EP) bands, whose group velocity is significantly larger than the excitons. Dissipative mechanisms that affect the constituent states of EPs, such as exciton-phonon coupling and cavity loss, have been observed to reduce the group velocities in experiments.

View Article and Find Full Text PDF

Phonon thermal transport in BiTe/SbTe monolayer superlattices: a neural network potential study.

Nanoscale

January 2025

Key Laboratory of Artificial Micro- and Nano-structures of Ministry of Education, School of Physics and Technology, Wuhan University, Wuhan 430072, People's Republic of China.

Superlattices are significant means to reduce the lattice thermal conductivity of thermoelectric materials and optimize their performance. In this work, using high-precision first-principles based neural network potentials combined with non-equilibrium molecular dynamics simulations and the phonon Boltzmann transport equation, the lattice thermal conductivities of BiTe monolayer and lateral BiTe/SbTe monolayer superlattices are thoroughly investigated. As the period length increases, the thermal conductivity shows a trend of an initial decrease followed by an increase, which aligns with conventional observations.

View Article and Find Full Text PDF

The interfaces between the perovskite and charge-transporting layers typically exhibit high defect concentrations, which are the primary cause of open-circuit voltage loss. Passivating the interface between the perovskite and electron-transporting layer is particularly challenging due to the dissolution of surface treatment agents during the perovskite coating. In this study, a coherent FAPbICl buried interface was simultaneously formed during the preparation of FAPbI.

View Article and Find Full Text PDF

We present new developments for an ab-initio model of the neutron relative biological effectiveness (RBE) in inducing specific classes of DNA damage. RBE is evaluated as a function of the incident neutron energy and of the depth inside a human-sized reference spherical phantom. The adopted mechanistic approach traces neutron RBE back to its origin, i.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!