Computational Study of Oxygen Diffusion along a[100] Dislocations in the Perovskite Oxide SrTiO3.

ACS Appl Mater Interfaces

Institute of Physical Chemistry, RWTH Aachen University, 52056 Aachen, Germany.

Published: May 2016

We used classical molecular-dynamics simulations to study the atomistic structure of, and the diffusion of oxygen ions along, the periodic array of edge dislocations comprising a symmetrical 6.0° [100] tilt grain boundary in SrTiO3. The results indicate that, at elevated temperatures, the two types of dislocation core (TiO2-type and SrO-type) that make up the boundary are stable and that oxygen-deficient cores maintain their dissociated structures. They also confirm that oxygen vacancies prefer to reside at the cores rather than in the bulk. Tracer diffusion coefficients of oxygen were obtained for oxygen-deficient bulk and grain-boundary simulation cells at temperatures in the range of 1000 ≤ T/K ≤ 2300. Calculated values of the oxygen-vacancy diffusion coefficient for the bulk phase agree extremely well with published experimental data. Tracer diffusion coefficients obtained for the grain-boundary cell are, in comparison to those for the bulk, lower in magnitude and have a higher activation enthalpy, indicating that, relative to the bulk, the migration of oxygen ions along a[100] dislocation cores in SrTiO3 is hindered. These results provide further support for the decoupled model of filament formation in resistively switching SrTiO3.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acsami.5b12574DOI Listing

Publication Analysis

Top Keywords

oxygen ions
8
tracer diffusion
8
diffusion coefficients
8
oxygen
5
diffusion
5
bulk
5
computational study
4
study oxygen
4
oxygen diffusion
4
diffusion a[100]
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!