Immobilization of Pb and Cu in polluted soil by superphosphate, multi-walled carbon nanotube, rice straw and its derived biochar.

Environ Sci Pollut Res Int

Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of Yangtse River), Ministry of Agriculture, College of Resources and Environment, Huazhong Agricultural University, No. 1 Shizishan Street, Hongshan District, Wuhan, Hubei, 430070, P. R. China.

Published: August 2016

Lead (Pb) and copper (Cu) contamination in croplands pose severe health hazards and environmental concerns throughout soil-food chain transfer. In the present study, BCR, TCLP, CaCl2, and SBET techniques were employed to evaluate the simultaneous effectiveness of rice straw (RS) and its derived biochar (BC), multiwall carbon nanotube (MWCNT), and single superphosphate (SSP) to immobilize the Pb and Cu in co-contaminated soil. The BCR sequential extraction results suggested that with increasing BC and SSP amount, the acid-soluble fractions decreased while oxidizable and residual proportions of Pb and Cu were increased significantly. Compared to SSP, the application of BC amendment substantially modified partitioning of Cu from easily exchangeable phase to less bioavailable residual bound fraction. The immobilized Pb and Cu were mainly transformed to reducible forms. The TCLP and CaCl2-extracted Pb and Cu were reduced significantly by the addition of BC compared to RS and MWCNT, whereas the bio-accessibility of Pb significantly reduced with RS addition. SSP showed better results for Pb immobilization while marginal for Cu in co-contaminated soil. Overall, the addition of BC offered the best results and could be effective in both Pb and Cu immobilization thereby reducing their mobility and bioavailability in the co-contaminated soil.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s11356-016-6695-0DOI Listing

Publication Analysis

Top Keywords

co-contaminated soil
12
carbon nanotube
8
rice straw
8
straw derived
8
derived biochar
8
reduced addition
8
immobilization polluted
4
soil
4
polluted soil
4
soil superphosphate
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!