This paper presents HybridPLAY, a novel technology composed of a sensor and mobile-based video games that transforms urban playgrounds into game scenarios. With this technology we aim to stimulate physical activity and playful learning by creating an entertaining environment in which users can actively participate and collaborate. HybridPLAY is different from other existing technologies that enhance playgrounds, as it is not integrated in them but can be attached to the different elements of the playgrounds, making its use more ubiquitous (i.e., not restricted to the playgrounds). HybridPLAY was born in 2007 as an artistic concept, and evolved after different phases of research and testing by almost 2000 users around the world (in workshops, artistic events, conferences, etc.). Here, we present the temporal evolution of HybridPLAY with the different versions of the sensors and the video games, and a detailed technical description of the sensors and the way interactions are produced. We also present the outcomes after the evaluation by users at different events and workshops. We believe that HybridPLAY has great potential to contribute to increased physical activity in kids, and also to improve the learning process and monitoring at school centres by letting users create the content of the apps, leading to new narratives and fostering creativity.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4851100 | PMC |
http://dx.doi.org/10.3390/s16040586 | DOI Listing |
JCI Insight
January 2025
Department of Nephrology, Blood Purification Research Center, The First Affiliated Hospital, Fujian Medical University, Fuzhou, China.
Renal osteodystrophy is commonly seen in patients with chronic kidney disease (CKD) due to disrupted mineral homeostasis. Given the impaired renal function in these patients, common anti-resorptive agents, including bisphosphonates, must be used with caution or even contraindicated. Therefore, an alternative therapy without renal burden to combat renal osteodystrophy is urgently needed.
View Article and Find Full Text PDFJCI Insight
January 2025
Dianne Hoppes Nunnally Laboratory Research Division, Joslin Diabetes Center, Boston, United States of America.
Background: We aimed to characterize factors associated with the under-studied complication of cognitive decline in aging people with long-duration type 1 diabetes (T1D).
Methods: Joslin "Medalists" (n = 222; T1D ≥ 50 years) underwent cognitive testing. Medalists (n = 52) and age-matched non-diabetic controls (n = 20) underwent neuro- and retinal imaging.
Pulmonology
December 2025
Respiratory Rehabilitation Unit, Istituti Clinici Scientifici Maugeri IRCCS, Lumezzane, Italy.
Pulmonology
December 2025
Department of Human Movement Sciences, Laboratory of Epidemiology and Human Movement - EPIMOV, Federal University of São Paulo (UNIFESP), São Paulo, Brazil.
Pulmonology
December 2025
Department of Intensive Rehabilitation, The First Affiliated Hospital of Liaoning University of Traditional Chinese Medicine, Shenyang, China.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!