Background: Clostridium acetobutylicum possesses two homologous adhE genes, adhE1 and adhE2, which have been proposed to be responsible for butanol production in solventogenic and alcohologenic cultures, respectively. To investigate their contributions in detail, in-frame deletion mutants of each gene were constructed and subjected to quantitative transcriptomic (mRNA molecules/cell) and fluxomic analyses in acidogenic, solventogenic, and alcohologenic chemostat cultures.
Results: Under solventogenesis, compared to the control strain, only ΔadhE1 mutant exhibited significant changes showing decreased butanol production and transcriptional expression changes in numerous genes. In particular, adhE2 was over expressed (126-fold); thus, AdhE2 can partially replace AdhE1 for butanol production (more than 30 % of the in vivo butanol flux) under solventogenesis. Under alcohologenesis, only ΔadhE2 mutant exhibited striking changes in gene expression and metabolic fluxes, and butanol production was completely lost. Therefore, it was demonstrated that AdhE2 is essential for butanol production and thus metabolic fluxes were redirected toward butyrate formation. Under acidogenesis, metabolic fluxes were not significantly changed in both mutants except the complete loss of butanol formation in ΔadhE2, but numerous changes in gene expression were observed. Furthermore, most of the significantly up- or down-regulated genes under this condition showed the same pattern of change in both mutants.
Conclusions: This quantitative system-scale analysis confirms the proposed roles of AdhE1 and AdhE2 in butanol formation that AdhE1 is the key enzyme under solventogenesis, whereas AdhE2 is the key enzyme for butanol formation under acidogenesis and alcohologenesis. Our study also highlights the metabolic flexibility of C. acetobutylicum to genetic alterations of its primary metabolism.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4845359 | PMC |
http://dx.doi.org/10.1186/s13068-016-0507-0 | DOI Listing |
Curr Top Med Chem
January 2025
Medicinal Chemistry Department, Theodor Bilharz Research Institute Kornaish El Nile, Warrak El-Hadar, Imbaba (P.O. 30), Giza 12411, Egypt.
Background: Research into oxidative stress, cancer, and natural products revealed promising avenues for therapeutic intervention. Natural products are considered potent pharmaceuticals in combating oxidative stress and its relationship with cancer.
Methods: This study was carried out to evaluate the chemical profile and antioxidant activities using DPPH, ABTS, Phenanthroline, Cupric, Phosphomolybdenum, FRAP, Hydroxyl, Iron chelation in vitro assays, and anticancer properties by MTT method of Cistus creticus extracts.
Anal Chem
January 2025
Environment Research Institute, Shandong University, Qingdao 266237, China.
Globally, drug-impaired driving fatalities now exceed those from drunk driving, urging the need for on-site and roadside detection methods. In this study, a photothermal desorption and reagent-assisted low-temperature plasma ionization miniature ion trap mass spectrometer (PDRA-LTP-ITMS) was developed for on-site detection of drug-impaired driving. The pseudomultiple reaction monitoring (MRM) in PDRA-LTP-ITMS enables continuous ion selection during ion introduction and improved sensitivity to nearly 3-fold compared with the conventional full scan mode.
View Article and Find Full Text PDFMolecules
January 2025
Department of Medical Biosciences, Faculty of Life Sciences, Ritsumeikan University, Kusatsu 525-8577, Shiga, Japan.
Traditional Japanese medicines, i.e., Kampo medicines, consist of crude drugs (mostly plants) that have empirical pharmacological functions ('' in Japanese), such as clearing heat.
View Article and Find Full Text PDFBiomolecules
January 2025
Division of Biochemistry, National Institute of Health Sciences, Kawasaki-ku, Kawasaki 210-9501, Japan.
Chemical leukoderma is a disorder induced by chemicals such as rhododendrol and monobenzone. These compounds possess a -substituted phenol moiety and undergo oxidation into highly reactive and toxic -quinone metabolites by tyrosinase. This metabolic activation plays a critical role in the development of leukoderma through the production of damage to melanocytes and immunological responses.
View Article and Find Full Text PDFFoods
January 2025
College of Food and Chemical Engineering, Shaoyang University, Shaoshui Road, Shaoyang 422000, China.
Endogenous peptides in Baijiu have primarily focused on finished liquor research, with limited attention given to the peptides in base liquor prior to blending. Liquid chromatography-tandem mass spectrometry (LC-MS) was employed to identify endogenous peptides in the distillates from the first to seventh rounds of soy sauce-flavored Baijiu. Two hundred and five oligopeptides were identified from these distillates, all of which had molecular weights below 1000 Da and were composed of amino acid residues associated with flavor (sweet, sour, and bitter) and biological activity.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!