Basal Progenitors Contribute to Repair of the Prostate Epithelium Following Induced Luminal Anoikis.

Stem Cell Reports

Departments of Medicine, Genetics & Development, Urology, and Systems Biology, Herbert Irving Comprehensive Cancer Center, Columbia University Medical Center, New York, NY 10032, USA. Electronic address:

Published: May 2016

Contact with the extracellular matrix is essential for maintenance of epithelial cells in many tissues, while in its absence epithelial cells can detach and undergo anoikis. Here, we show that anoikis of luminal cells in the prostate epithelium is followed by a program of tissue repair that is mediated in part by differentiation of basal epithelial cells to luminal cells. We describe a mouse model in which inducible deletion of E-cadherin in prostate luminal cells results in their apoptotic cell death by anoikis, in the absence of phenotypic effects in the surrounding stroma. Quantitative assessments of proliferation and cell death in the luminal and basal compartments indicate that basal cells can rapidly generate luminal cells. Thus, our findings identify a role for basal-to-luminal differentiation in prostate epithelial repair, and provide a normal context to analogous processes that may occur during prostate cancer initiation.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4939748PMC
http://dx.doi.org/10.1016/j.stemcr.2016.03.007DOI Listing

Publication Analysis

Top Keywords

luminal cells
16
epithelial cells
12
prostate epithelium
8
cells
8
cell death
8
luminal
6
prostate
5
basal
4
basal progenitors
4
progenitors contribute
4

Similar Publications

Multiple next-generation molecules targeting estrogen receptor α (ERα) are being investigated in breast cancer clinical trials, encompassing thousands of women globally. Development of these molecules was partly motivated by the discovery of resistance-associated mutations in ESR1 (encodes ERα). Here, we studied the impact of ERα antagonist/degraders against Esr1 mutations expressed in mouse mammary glands.

View Article and Find Full Text PDF

Objectives: Immune checkpoint inhibitors have revolutionized treatment of platinum-refractory advanced bladder cancer, offering hope where options are limited. Response varies, however, influenced by factors such as the tumor's immune microenvironment and prior therapy. Muscle-invasive bladder cancer (MIBC) is stratified into molecular subtypes, with distinct clinicopathologic features affecting prognosis and treatment.

View Article and Find Full Text PDF

In this study, the effects of histone deacetylase inhibitor CI-994 and nanotechnological drug liposomal cisplatin LipoPlatin on Luminal A breast cancer and triple-negative breast cancer were explored using agents alone and in combination. MCF-7 and MDA-MB-231 cell lines were used. Cell viability, and cell index values obtained from xCELLigence System, MI, BrdU LI and AI were evaluated in experiments.

View Article and Find Full Text PDF

The purpose of the current study was to investigate the potential ameliorating murine reproductive effects of herbal tea extracts against bisphenol A-induced (BPA) cytotoxicity. A comparative study was applied among red, green and blue teas in mice groups. Samples were coded as RTE, GTE and BTE groups, respectively.

View Article and Find Full Text PDF

Two-component system GrpP/GrpQ promotes pathogenicity of uropathogenic Escherichia coli CFT073 by upregulating type 1 fimbria.

Nat Commun

January 2025

National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, TEDA Institute of Biological Sciences and Biotechnology, Nankai University, Tianjin, China.

Uropathogenic Escherichia coli (UPEC) is a major cause of urinary tract infections (UTIs). Invasion into bladder epithelial cells (BECs) on the bladder luminal surface via type 1 fimbria is the first critical step in UPEC infection. Although type 1 fimbria expression increases during UPEC invasion of BECs, the underlying regulatory mechanisms remain poorly understood.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!