Type 5 adenylyl cyclase (AC5) plays an important role in the development of chronic catecholamine stress-induced heart failure and arrhythmia in mice. Epac (exchange protein activated by cAMP), which is directly activated by cAMP independent of protein kinase A, has been recently identified as a novel mediator of cAMP signaling in the heart. However, the role of Epac in AC5-mediated cardiac dysfunction and arrhythmias remains poorly understood. We therefore generated AC5 transgenic mice (AC5TG) with selective disruption of the Epac1 gene (AC5TG-Epac1KO), and compared their phenotypes with those of AC5TG after chronic isoproterenol (ISO) infusion. Decreased cardiac function as well as increased susceptibility to pacing-induced atrial fibrillation (AF) in response to ISO were significantly attenuated in AC5TG-Epac1KO mice, compared to AC5TG mice. Increased cardiac apoptosis and cardiac fibrosis were also concomitantly attenuated in AC5TG-Epac1KO mice compared to AC5TG mice. These findings indicate that Epac1 plays an important role in AC5-mediated cardiac dysfunction and AF susceptibility.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.bbrc.2016.04.123 | DOI Listing |
Curr Cardiol Rep
January 2025
Department of Cardiovascular & Thoracic Surgery, Sandra Atlas Bass Heart Hospital at North Shore University Hospital, Northwell Health, 300 Community Drive, 1 DSU, Manhasset, NY, 11030, USA.
Purpose Of Review: This article discusses a tailored approach to managing cardiogenic shock and temporary mechanical circulatory support (tMCS). We also outline specific mobilization strategies for patients with different tMCS devices and configurations, which can be enabled by this tailored approach to cardiogenic shock management.
Recent Findings: Safe and effective mobilization of patients with cardiogenic shock receiving tMCS can be accomplished.
Diabetes
January 2025
Department of Cardiology, Xijing Hospital, Air Force Medical University, Xi'an, Shaanxi, China.
Diabetic microvascular dysfunction is evidenced by disrupted endothelial cell junctions and increased microvascular permeability. However, effective strategies against these injuries remain scarce. In this study, the type 2 diabetes mouse model was established by high-fat diet combined with streptozotocin injection in Rnd3 endothelial- specific transgenic and knockout mice.
View Article and Find Full Text PDFAm J Physiol Regul Integr Comp Physiol
December 2024
Curtin University, Curtin Medical Research Institute (Bentley, WA, AUSTRALIA).
Physical activity improves myocardial structure, function and resilience via complex, incompletely defined mechanisms. We explored effects of 1-2 wks swim training on cardiac and systemic phenotype in young male C57Bl/6 mice. Two wks forced swimming (90 min twice daily) resulted in cardiac hypertrophy (22% increase in heart:body weight, P<0.
View Article and Find Full Text PDFAm J Physiol Endocrinol Metab
January 2025
Knight Cardiovascular Institute, Oregon Health & Science University, Portland, OR, 97239.
Maternal obesity puts the offspring at high risk of developing obesity and cardio-metabolic diseases in adulthood. Here, we utilized a mouse model of maternal high-fat diet (HFD)-induced obesity that recapitulates metabolic perturbations seen in humans. We show increased adiposity in the offspring of HFD-fed mothers (Off-HFD) when compared to the offspring regular diet-fed mothers (Off-RD).
View Article and Find Full Text PDFMicrobiol Spectr
January 2025
Department of Molecular and Comparative Pathobiology, Johns Hopkins University, School of Medicine, Baltimore, Maryland, USA.
Unlabelled: is a protozoan parasite that causes human and animal African trypanosomiases (HAT and AAT). Cardiac symptoms are commonly reported in HAT patients, and intracardiac parasites with accompanying myocarditis have been observed in both natural hosts and animal models of infection. Despite the importance of as a cause of cardiac dysfunction and the dramatic socioeconomic impact of African trypanosomiases in sub-Saharan Africa, there are currently no reproducible murine models of associated cardiomyopathy.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!