Background: Several studies have investigated the association between asthma exacerbations and exposures to ambient temperature and precipitation. However, limited data exists regarding how extreme events, projected to grow in frequency, intensity, and duration in the future in response to our changing climate, will impact the risk of hospitalization for asthma. The objective of our study was to quantify the association between frequency of extreme heat and precipitation events and increased risk of hospitalization for asthma in Maryland between 2000 and 2012.
Methods: We used a time-stratified case-crossover design to examine the association between exposure to extreme heat and precipitation events and risk of hospitalization for asthma (ICD-9 code 493, n = 115,923).
Results: Occurrence of extreme heat events in Maryland increased the risk of same day hospitalization for asthma (lag 0) by 3 % (Odds Ratio (OR): 1.03, 95 % Confidence Interval (CI): 1.00, 1.07), with a considerably higher risk observed for extreme heat events that occur during summer months (OR: 1.23, 95 % CI: 1.15, 1.33). Likewise, summertime extreme precipitation events increased the risk of hospitalization for asthma by 11 % in Maryland (OR: 1.11, 95 % CI: 1.06, 1.17). Across age groups, increase in risk for asthma hospitalization from exposure to extreme heat event during the summer months was most pronounced among youth and adults, while those related to extreme precipitation event was highest among ≤4 year olds.
Conclusion: Exposure to extreme heat and extreme precipitation events, particularly during summertime, is associated with increased risk of hospitalization for asthma in Maryland. Our results suggest that projected increases in frequency of extreme heat and precipitation event will have significant impact on public health.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4847234 | PMC |
http://dx.doi.org/10.1186/s12940-016-0142-z | DOI Listing |
Environ Res
January 2025
School of Public Health, Wuhan University of Science and Technology, Wuhan 430065, China. Electronic address:
Background: Although the association of short-term ozone and heatwave exposure with cerebrovascular disease has been well documented, it remains largely unknown whether their co-exposure could synergistically trigger ischemic stroke (IS) mortality.
Methods: We performed an individual-level, time-stratified case-crossover analysis utilizing province-wide IS deaths (n =59079) in warm seasons (May-September) during 2016-2019, across Jiangsu, eastern China. Heatwave was defined according to a combination of multiple temperature thresholds (90-97.
Materials (Basel)
December 2024
Ministry of Education Key Laboratory for Cross-Scale Micro and Nano Manufacturing, College of Mechanical and Electrical Engineering, Changchun University of Science and Technology, Changchun 130022, China.
Zircaloy-4 is extensively used in nuclear reactors as fuel element cladding and core structural material. However, the safety concerns post-Fukushima underscore the need for further enhancing its high-temperature and high-pressure water-side corrosion resistance. Therefore, this study aimed to investigate the effects of high-current pulsed electron beam (HCPEB) irradiation on the microstructures and corrosion resistance of Zircaloy-4, with the goal of improving its performance in nuclear applications.
View Article and Find Full Text PDFMaterials (Basel)
December 2024
COMTES FHT a.s., Prumyslova 995, 334 41 Dobrany, Czech Republic.
One of the concepts behind Generation IV reactors is a molten salt coolant system, where the materials for the reactor itself and for the primary and secondary circuit components are subjected to extreme chemical and thermal stresses. Due to the unavailability of these materials, a nickel-molybdenum alloy known as MoNiCr has been developed in the Czech Republic. This paper discusses the manufacturing process for the MoNiCr alloy, covering conventional casting technology, forming, powder atomization, additive manufacturing (AM) using the directed energy deposition (DED-LB) process, and final heat treatment.
View Article and Find Full Text PDFAdv Sci (Weinh)
January 2025
Hunan Joint International Research Center for Carbon Dioxide Resource Utilization, School of Physics, Central South University, Changsha, Hunan, 410083, P. R. China.
Perfluorinated compounds (PFCs) are emerging environmental pollutants characterized by their extreme stability and resistance to degradation. Among them, tetrafluoromethane (CF) is the simplest and most abundant PFC in the atmosphere. However, the highest C─F bond energy and its highly symmetrical structure make it particularly challenging to decompose.
View Article and Find Full Text PDFNat Commun
January 2025
Hunan University of Technology and Business, Changsha, China.
The exposure to extreme heat at workplaces poses substantial threat to human effort and manual labour. This becomes more prominent due to the global dispersion of labour-intensive production activities via trade. We combine a climate model with an input-output model to quantify the risks associated with trade-related occupational extreme heat exposure.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!