Effective image-based artifact correction is an essential step in the analysis of diffusion MR images. Many current approaches are based on retrospective registration, which becomes challenging in the realm of high b -values and low signal-to-noise ratio, rendering the corresponding correction schemes more and more ineffective. We propose a novel registration scheme based on memetic search optimization that allows for simultaneous exploitation of different signal intensity relationships between the images, leading to more robust registration results. We demonstrate the increased robustness and efficacy of our method on simulated as well as in vivo datasets. In contrast to the state-of-art methods, the median target registration error (TRE) stayed below the voxel size even for high b -values (3000 s ·mm and higher) and low SNR conditions. We also demonstrate the increased precision in diffusion-derived quantities by evaluating Neurite Orientation Dispersion and Density Imaging (NODDI) derived measures on a in vivo dataset with severe motion artifacts. These promising results will potentially inspire further studies on metaheuristic optimization in diffusion MRI artifact correction and image registration in general.

Download full-text PDF

Source
http://dx.doi.org/10.1109/TMI.2016.2557580DOI Listing

Publication Analysis

Top Keywords

memetic search
8
diffusion mri
8
artifact correction
8
high -values
8
demonstrate increased
8
registration
5
multi-objective memetic
4
search robust
4
robust motion
4
motion distortion
4

Similar Publications

Given the increasingly severe environmental challenges, distributed green manufacturing has garnered significant academic and industrial interest. This paper addresses the distributed two-stage flexible job shop scheduling problem (DTFJSP) under time-of-use (TOU) electricity pricing, with the objective of minimizing both makespan and total energy consumption costs (TEC). To tackle the problem, a hybrid memetic algorithm (HMA) is proposed.

View Article and Find Full Text PDF

Memetic ant colony optimization for multi-constrained cognitive diagnostic test construction.

Health Inf Sci Syst

December 2024

Department of Psychology, Sun Yat-sen University, Guangzhou, 510006 Guangdong China.

Purpose: Cognitive diagnostic tests (CDTs) assess cognitive skills at a more granular level, providing detailed insights into the mastery profile of test-takers. Traditional algorithms for constructing CDTs have partially addressed these challenges, focusing on a limited number of constraints. This paper intends to utilize a meta-heuristic algorithm to produce high-quality tests and handle more constraints simultaneously.

View Article and Find Full Text PDF

Acute lymphoblastic leukemia (ALL) is a fatal blood disorder characterized by the excessive proliferation of immature white blood cells, originating in the bone marrow. An effective prognosis and treatment of ALL calls for its accurate and timely detection. Deep convolutional neural networks (CNNs) have shown promising results in digital pathology.

View Article and Find Full Text PDF

Artificial Neural Networks (ANNs) have been used in a multitude of real-world applications given their predictive capabilities, and algorithms based on gradient descent, such as Backpropagation (BP) and variants, are usually considered for their optimisation. However, these algorithms have been shown to get stuck at local optima, and they require a cautious design of the architecture of the model. This paper proposes a novel memetic training method for simultaneously learning the ANNs structure and weights based on the Coral Reef Optimisation algorithms (CROs), a global-search metaheuristic based on corals' biology and coral reef formation.

View Article and Find Full Text PDF

In the current global cooperative production environment, modern industries are confronted with intricate production plans, demanding the adoption of contemporary production scheduling strategies. Within this context, distributed manufacturing has emerged as a prominent trend. Manufacturing enterprises, especially those engaged in activities like automotive mold production and welding, are facing a significant challenge in managing a significant amount of small-scale tasks characterized by short processing times.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!