There remain significant gaps in our ability to predict dewetting and wetting despite the extensive study over the past century. An important reason is the absence of nanoscopic knowledge about the processes near the moving contact line. This experimental study for the first time obtained the liquid morphology within 10 nm of the contact line, which was receding at low speed (U < 50 nm/s). The results put an end to long-standing debate about the microscopic contact angle, which turned out to be varying with the speed as opposed to the constant-angle assumption that has been frequently employed in modeling. Moreover, a residual film of nanometer thickness ubiquitously remained on the solid after the receding contact line passed. This microscopic residual film modified the solid surface and thus made dewetting far from a simple reverse of wetting. A complete scenario for dewetting and coating is provided.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acs.jpclett.6b00620 | DOI Listing |
Langmuir
December 2024
Siemens Industry Software Netherlands B.V, The Hague 2595 BN, Netherlands.
This work provides a framework to digitally assess any droplet's static and dynamic contact angles on coatings and polymeric substrates. We are introducing a new dissipative particle dynamics coarse-grained model to attain the spatiotemporal conditions and the coexistence of different phases that such investigation dictates. Two computational techniques are additionally developed; a robust technique to calculate the static contact angle using density profiles and a perturbation method to evaluate dynamic contact angles.
View Article and Find Full Text PDFChempluschem
December 2024
Institute for Organic Synthesis and Photoreactivity, National Research Council of Italy, Via Gobetti 101, 40129, Bologna, Italy.
The creation of ordered structures of molecules assembled from solution onto a substrate is a fundamental technological necessity across various disciplines, spanning from crystallography to organic electronics. However, achieving macroscopic order poses significant challenges, since the process of deposition is inherently impacted by factors like solvent evaporation and dewetting flows, which hinder the formation of well-organized structures. Traditional methods like drop casting or spin coating encounter limitations due to the rapid kinetics of solvent evaporation, leading to limited control over final uniformity and order.
View Article and Find Full Text PDFLangmuir
August 2024
Department of Chemical Engineering, Indian Institute of Technology Kanpur, Uttar Pradesh 208016, India.
The stability of ultrathin (<100 nm) polymer films is essential in applications like protective coatings. On the contrary, their instability may actually be desirable for the emergence of self-assembled nanoscale patterns utilized in the fabrication of functional devices. Polymer solution films exhibit two distinct kinds of instabilities, viz.
View Article and Find Full Text PDFNanotechnology
September 2024
Department of Electrical and Computer Engineering, University of Alberta, 9211-116 St, Edmonton AB T6G 1H9, Canada.
A key challenge in the field of plexcitonic quantum devices is the fabrication of solid-state, device-friendly plexcitonic nanostructures using inexpensive and scalable techniques. Lithography-free, bottom-up nanofabrication methods have remained relatively unexplored within the context of plexcitonic coupling. In this work, a plexcitonic system consisting of thermally dewetted plasmonic gold nanoislands (AuNI) coated with a thin film of J-aggregates was investigated.
View Article and Find Full Text PDFPolymers (Basel)
June 2024
School of Materials Science and Engineering, Beijing Institute of Technology, Beijing 100081, China.
The application of hexanitrohexaazaisowurtzitane (HNIW) as an oxidizer in solid propellants aligns with the pursuit of high-energy materials. However, the phase transformation behavior and high impact sensitivity of HNIW are its limitations. Due to the strong adhesion and mild synthesis conditions, polydopamine (PDA) has been employed to modify HNIW.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!