Most research on the effects of environmental change in freshwaters has focused on incremental changes in average conditions, rather than fluctuations or extreme events such as heatwaves, cold snaps, droughts, floods or wildfires, which may have even more profound consequences. Such events are commonly predicted to increase in frequency, intensity and duration with global climate change, with many systems being exposed to conditions with no recent historical precedent. We propose a mechanistic framework for predicting potential impacts of environmental fluctuations on running-water ecosystems by scaling up effects of fluctuations from individuals to entire ecosystems. This framework requires integration of four key components: effects of the environment on individual metabolism, metabolic and biomechanical constraints on fluctuating species interactions, assembly dynamics of local food webs, and mapping the dynamics of the meta-community onto ecosystem function. We illustrate the framework by developing a mathematical model of environmental fluctuations on dynamically assembling food webs. We highlight (currently limited) empirical evidence for emerging insights and theoretical predictions. For example, widely supported predictions about the effects of environmental fluctuations are: high vulnerability of species with high per capita metabolic demands such as large-bodied ones at the top of food webs; simplification of food web network structure and impaired energetic transfer efficiency; and reduced resilience and top-down relative to bottom-up regulation of food web and ecosystem processes. We conclude by identifying key questions and challenges that need to be addressed to develop more accurate and predictive bio-assessments of the effects of fluctuations, and implications of fluctuations for management practices in an increasingly uncertain world.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4843695PMC
http://dx.doi.org/10.1098/rstb.2015.0274DOI Listing

Publication Analysis

Top Keywords

environmental fluctuations
12
food webs
12
fluctuations
8
fluctuations extreme
8
extreme events
8
effects environmental
8
effects fluctuations
8
food web
8
effects
6
food
5

Similar Publications

Altered DNA dynamics at lesion sites are implicated in how DNA repair proteins sense damage within genomic DNA. Using laser temperature-jump (T-jump) spectroscopy combined with cytosine-analog Förster Resonance Energy Transfer (FRET) probes that sense local DNA conformations, we measured the intrinsic dynamics of DNA containing 3 base-pair mismatches recognized in vitro by Rad4 (yeast ortholog of XPC). Rad4/XPC recognizes diverse lesions from environmental mutagens and initiates nucleotide excision repair.

View Article and Find Full Text PDF

Autoimmune thyroid disease (AITD) is the leading cause of thyroid dysfunction globally, characterized primarily by two distinct clinical manifestations: Hashimoto's thyroiditis (HT) and Graves' disease (GD). The prevalence of AITD is approximately twice as high in women compared to men, with a particularly pronounced risk during the reproductive years. Pregnancy exerts profound effects on thyroid physiology and immune regulation due to hormonal fluctuations and immune adaptations aimed at fostering maternal-fetal tolerance, potentially triggering or exacerbating AITD.

View Article and Find Full Text PDF

The electrical resistance (ER) method is widely used for atmospheric corrosion measurements and can be used to measure the corrosion rate accurately. However, severe errors occur in environments with temperature fluctuations, such as areas exposed to solar radiation, preventing accurate temporal corrosion rate measurement. To decrease the error, we developed an improved sensor composed of a reference metal film and an overlaid sensor metal film to cancel temperature differences between them.

View Article and Find Full Text PDF

In the last decade, substantial progress has been made to improve the performance of optical gyroscopes for inertial navigation applications in terms of critical parameters such as bias stability, scale factor stability, and angular random walk (ARW). Specifically, resonant fiber optic gyroscopes (RFOGs) have emerged as a viable alternative to widely popular interferometric fiber optic gyroscopes (IFOGs). In a conventional RFOG, a single-wavelength laser source is used to generate counter-propagating waves in a ring resonator, for which the phase difference is measured in terms of the resonant frequency shift to obtain the rotation rate.

View Article and Find Full Text PDF

Background/objectives: Home isolation measures during the COVID-19 lockdown periods may have influenced individuals' lifestyles. The COVEAT study aimed to identify differences in children's and their parents' dietary behavior, children's body weight and parental body mass index (BMI) between two lockdown periods implemented in Greece.

Methods: In total, 61 participants (children 2-18 years and their parents) completed questionnaires about their lifestyle, body weight and height, and family socio-demographic data, during both lockdown periods (LDs) implemented in Greece (LD1 in March-May 2020; LD2 in December 2020-January 2021).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!