Recent studies have indicated that mammalian cells contain a cytosolic protein disaggregation machinery comprised of Hsc70, DnaJ homologs, and Hsp110 proteins, the last of which acts to accelerate a rate-limiting step of nucleotide exchange of Hsc70. We tested the ability of transgenic overexpression of a Thy1 promoter-driven human Hsp110 protein, HspA4L (Apg1), in neuronal cells of a transgenic G85R SOD1YFP ALS mouse strain to improve survival. Notably, G85R is a mutant version of Cu/Zn superoxide dismutase 1 (SOD1) that is unable to reach native form and that is prone to aggregation, with prominent YFP-fluorescent aggregates observed in the motor neurons of the transgenic mice as early as 1 mo of age. The several-fold overexpression of Hsp110 in motor neurons of these mice was associated with an increased median survival from ∼5.5 to 7.5 mo and increased maximum survival from 6.5 to 12 mo. Improvement of survival was also observed for a G93A mutant SOD1 ALS strain. We conclude that neurodegeneration associated with cytosolic misfolding and aggregation can be ameliorated by overexpression of Hsp110, likely enhancing the function of a cytosolic disaggregation machinery.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4868459 | PMC |
http://dx.doi.org/10.1073/pnas.1604885113 | DOI Listing |
Bio Protoc
October 2024
UK Dementia Research Institute at University of Cambridge, Department of Clinical Neurosciences, Cambridge, UK.
Protein misfolding fuels multiple neurodegenerative diseases, but existing techniques lack the resolution to pinpoint the location and physical properties of aggregates within living cells. Our protocol describes high-resolution confocal and fluorescent lifetime microscopy (Fast 3D FLIM) of an aggregation probing system. This system involves a metastable HaloTag protein (HT-aggr) labeled with P1 solvatochromic fluorophore, which can be targeted to subcellular compartments.
View Article and Find Full Text PDFProteins
September 2024
Interdisciplinary Biotechnology Unit, Aligarh Muslim University, Aligarh, India.
Curr Opin Struct Biol
December 2023
Chemical and Structural Biology Department, Weizmann Institute of Science, Rehovot, 761000, Israel. Electronic address:
Proteins carry out the vast majority of functions in cells, but can only do so when properly folded. Following stress or mutation, proteins can lose their proper fold, resulting in misfolding, inactivity, and aggregation-posing a threat to cellular health. In order to counteract protein aggregation, cells have evolved a remarkable subset of molecular chaperones, called protein disaggregases, which collaboratively possess the ability to forcibly untangle protein aggregates.
View Article and Find Full Text PDFFEBS J
January 2024
Department of Chemistry, Midwestern State University, Wichita Falls, TX, USA.
Protein aggregation is a biological phenomenon caused by the accumulation of misfolded proteins. Amyloid beta (Aβ) peptides are derived from the cleavage of a larger membrane protein molecule and accumulate to form plaques extracellularly. According to the amyloid hypothesis, accumulation of Aβ aggregates in the brain is primarily responsible for the pathogenesis of Alzheimer's disease (AD).
View Article and Find Full Text PDFNat Commun
February 2023
Department of Cellular Biochemistry, Max Planck Institute of Biochemistry, Am Klopferspitz 18, 82152, Martinsried, Germany.
Amyloid-like aggregates of the microtubule-associated protein Tau are associated with several neurodegenerative disorders including Alzheimer's disease. The existence of cellular machinery for the removal of such aggregates has remained unclear, as specialized disaggregase chaperones are thought to be absent in mammalian cells. Here we show in cell culture and in neurons that the hexameric ATPase valosin-containing protein (VCP) is recruited to ubiquitylated Tau fibrils, resulting in their efficient disaggregation.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!