Mechanochemistry has recently emerged as an environmentally friendly solventless synthesis method enabling a variety of transformations including those impracticable in solution. However, its application in the synthesis of well-defined nanomaterials remains very limited. Here, we report a new bottom-up mechanochemical strategy to rapid mild-conditions synthesis of organic ligand-coated ZnO nanocrystals (NCs) and their further host-guest modification with β-cyclodextrin (β-CD) leading to water-soluble amide-β-CD-coated ZnO NCs. The transformations can be achieved by either one-pot sequential or one-step three-component process. The developed bottom-up methodology is based on employing oxo-zinc benzamidate, [Zn4 (μ4 -O)(NHOCPh)6 ], as a predesigned molecular precursor undergoing mild solid-state transformation to ZnO NCs in the presence of water in a rapid, clean and sustainable process.

Download full-text PDF

Source
http://dx.doi.org/10.1002/chem.201600182DOI Listing

Publication Analysis

Top Keywords

zno ncs
8
applying mechanochemistry
4
mechanochemistry bottom-up
4
synthesis
4
bottom-up synthesis
4
synthesis host-guest
4
host-guest surface
4
surface modification
4
modification semiconducting
4
semiconducting nanocrystals
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!