Copper-Catalyzed Amino Lactonization and Amino Oxygenation of Alkenes Using O-Benzoylhydroxylamines.

J Am Chem Soc

Department of Chemistry, Duke University, Durham, North Carolina 27708, United States.

Published: May 2016

A copper-catalyzed amino lactonization of unsaturated carboxylic acids has been achieved as well as the analogous intermolecular three-component amino oxygenation of olefins. The transformation features mild conditions and a remarkably broad substrate scope, offering a novel and efficient approach to construct a wide range of amino lactones as well as 1,2-amino alcohol derivatives. Mechanistic studies suggest that the reaction proceeds via a distinctive O-benzoylhydroxylamine-promoted electrophilic amination of alkenes.

Download full-text PDF

Source
http://dx.doi.org/10.1021/jacs.6b02840DOI Listing

Publication Analysis

Top Keywords

copper-catalyzed amino
8
amino lactonization
8
amino oxygenation
8
amino
4
lactonization amino
4
oxygenation alkenes
4
alkenes o-benzoylhydroxylamines
4
o-benzoylhydroxylamines copper-catalyzed
4
lactonization unsaturated
4
unsaturated carboxylic
4

Similar Publications

Copper-Catalyzed Successive Radical Reactions of Glycine Derivatives.

Org Lett

January 2025

Gansu International Scientific and Technological Cooperation Base of Water-Retention Chemical Functional Materials, Key Laboratory of Eco-Environment-Related Polymer Materials Ministry of Education, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou, Gansu 730070, China.

Here, we present a three-component successive radical addition strategy for the preparation of complex noncanonical α-amino acids from easily available glycine derivatives, alkenes, and aryl sulfonium salts via a copper-catalyzed photoredox-neutral catalytic cycle. The utility of this method is further demonstrated by its application in late-stage site-selective modifications of glycine residues in short peptides. It is worth noting that only 1 mol % copper catalyst is required in this reaction, demonstrating high catalytic efficiency.

View Article and Find Full Text PDF

Dual Photoredox and Copper-Catalyzed Asymmetric Remote C(sp)-H Alkylation of Hydroxamic Acid Derivatives with Glycine Derivatives.

J Org Chem

January 2025

Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China.

Dual photoredox and copper-catalyzed remote asymmetric C(sp)-H alkylation of hydroxamic acid derivatives with glycine derivatives via a 1,5-hydrogen transfer (1,5-HAT) process has been realized. The reaction was characterized by redox-neutral and mild conditions, good yields, excellent enantioselectivity, and broad substrate scope. This protocol provides a straightforward and efficient strategy to prepare highly valuable enantioenriched noncanonical α-amino acids.

View Article and Find Full Text PDF

We disclose a broad platform for copper-catalyzed atom transfer radical addition (ATRA) of electron-deficient olefins. Catalytic Cu(dtbbpy)(OTf) enables radical addition of electron-deficient alkyl halides to acrylates, acrylamides, and vinyl sulfones in fair to excellent yields. The resultant ATRA products can be used in a variety of telescoped reactions, including substitution with basic amine nucleophiles to afford α-amino esters.

View Article and Find Full Text PDF

Copper-Catalyzed Asymmetric C(sp)-H Benzylation: Stereoselective Synthesis of Unnatural Aromatic Amino Acids.

Org Lett

December 2024

Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Sciences, Lanzhou University, 199 West Donggang Road, Lanzhou 730000, China.

The general synthesis of chiral unnatural aromatic amino acids has rarely been reported. We herein describe a visible light-promoted copper-catalyzed enantioselective C(sp)-H benzylation of glycine derivatives. The method demonstrated compatibility in coupling various -hydroxyphthalimide (NHP) esters derived from aromatic acids with glycine derivatives, providing a general protocol for synthesizing analogues of phenylalanine, tryptophan, and tyrosine.

View Article and Find Full Text PDF

Enrichable Protein Footprinting for Structural Proteomics.

J Am Soc Mass Spectrom

December 2024

Center for Genomic Science Innovation, University of Wisconsin Madison, Madison, Wisconsin 53706, United States.

Protein footprinting is a useful method for studying protein higher order structure and conformational changes induced by interactions with various ligands via addition of covalent modifications onto the protein. Compared to other methods that provide single amino acid-level structural resolution, such as cryo-EM, X-ray diffraction, and NMR, mass spectrometry (MS)-based methods can be advantageous as they require lower protein amounts and purity. As with other MS-based proteomic methods, such as post-translational modification analysis, enrichment techniques have proven necessary for both optimal sensitivity and sequence coverage when analyzing highly complex proteomes.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!