Three natural clay-based microstructures, namely layered montmorillonite (MMT), nanotubular halloysite (HNT) and micro-fibrillar sepiolite (SP) were used for the synthesis of hybrid chitosan-clay thin films and porous aerogel microspheres. At a first glance, a decrease in the viscosity of the three gel-forming solutions was noticed as a result of breaking the mutual polymeric chains interaction by the clay microstructure. Upon casting, chitosan-clay films displayed enhanced hydrophilicity in the order CS

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.carbpol.2016.03.077DOI Listing

Publication Analysis

Top Keywords

hybrid chitosan-clay
8
chitosan-clay thin
8
thin films
8
porous aerogel
8
aerogel microspheres
8
insightful understanding
4
understanding role
4
role clay
4
clay topology
4
topology stability
4

Similar Publications

Chitosan (CH) and pencil clay (CL) were utilized to prepare stable epichlorohydrin cross-linked chitosan-clay hybrid beads (CCHB) for the adsorptive removal of anionic reactive black 5 (RB5) dye. Among various percentage weight ratios of chitosan/clay hybrid beads, 40 % CH-60 % CL was selected as the best adsorbent owing to its stability and removal efficiency. The pore properties of CCHB in terms of surface area, total pore volume, and average pore width were 40.

View Article and Find Full Text PDF

This work aimed to prepare chitosan/clay microspheres, by the precipitation method, for use in drug carrier systems. The influence of the process parameters, particularly two airflows of the drag system (2.5 and 10 L·min) on the microspheres physical dimensions and properties, such as microstructure, degree of swelling and porosity were evaluated.

View Article and Find Full Text PDF

Chitosan-graphene oxide films and CO-dried porous aerogel microspheres: Interfacial interplay and stability.

Carbohydr Polym

July 2017

Euromed Research Institute, Engineering Division, Euro-Mediterranean University of Fes (UEMF), Fès-Shore, Route de Sidi Hrazem, 30070 Fès, Morocco. Electronic address:

The intimate interplay of chitosan (CS) and graphene oxide (GO) in aqueous acidic solution has been explored to design upon casting, nanostructured "brick-and-mortar" films (CS-GO-f) and by acidic-to-basic pH inversion, porous CO-dried aerogel microspheres (CS-GO-m). Owing to the presence of oxygenated functional groups in GO, good-quality crack-free hybrid films were obtained. Mechanical properties were improved independently of the GO content and it was found that a 20wt% loading affords hybrid film characterized with a Young modulus three times superior to that reached with the same loading of layered clay.

View Article and Find Full Text PDF

In the present study, chitosan assembled on gold and silver nanoparticles were prepared and characterized by UV-vis, TEM, EDX and DLS techniques. The nanocomposites chitosan (Ch)/clay, chitosan (Ch)/AgNPs/clay and chitosan (Ch)/AuNPs/clay were prepared by solution mixing method and characterized by FTIR, XRD, and SEM techniques. The adsorption of copper(II) ions onto the prepared hybrid composites from an aqueous solution using batch adsorption was examined.

View Article and Find Full Text PDF

Three natural clay-based microstructures, namely layered montmorillonite (MMT), nanotubular halloysite (HNT) and micro-fibrillar sepiolite (SP) were used for the synthesis of hybrid chitosan-clay thin films and porous aerogel microspheres. At a first glance, a decrease in the viscosity of the three gel-forming solutions was noticed as a result of breaking the mutual polymeric chains interaction by the clay microstructure. Upon casting, chitosan-clay films displayed enhanced hydrophilicity in the order CS View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!