Visually guided flight control in the rainforest is arguably one of the most complex insect behaviors: illumination varies dramatically depending on location [1], and the densely cluttered environment blocks out most of the sky [2]. What visual information do insects sample for flight control in this habitat? To begin answering this question, we determined the visual fields of the ocelli-thought to play a role in attitude stabilization of some flying insects [3-5]-of an orchid bee, Euglossa imperialis. High-resolution 3D models of the ocellar system from X-ray microtomography were used for optical ray tracing simulations. Surprisingly, these showed that each ocellus possesses two distinct visual fields-a focused monocular visual field suitable for detecting features elevated above the horizon and therefore assisting with flight stabilization [3-5] and, unlike other ocelli investigated to date [4, 6, 7], a large trinocular fronto-dorsal visual field shared by all ocelli. Histological analyses show that photoreceptors have similar orientations within each ocellus and are likely to be sensitive to polarized light, as in some other hymenopterans [7, 8]. We also found that the average receptor orientation is offset between the ocelli, each having different axes of polarization sensitivity relative to the head. Unlike the eyes of any other insect described to date, this ocellar system meets the requirements of a true polarization analyzer [9, 10]. The ocelli of E. imperialis could provide sensitive compass information for navigation in the rainforest and, additionally, provide cues for visual discrimination or flight control.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.cub.2016.03.038DOI Listing

Publication Analysis

Top Keywords

flight control
12
x-ray microtomography
8
ocellar system
8
visual field
8
visual
6
ocelli
5
dual function
4
function orchid
4
orchid bee
4
bee ocelli
4

Similar Publications

An Iterative Design Method for Advancing Air Traffic Control and Management Training Through Immersive VFR 3D Map Visualization.

IISE Trans Occup Ergon Hum Factors

January 2025

The Bradley Department of Electrical and Computer Engineering, College of Engineering, Virginia Polytechnic Institute and State University, Blacksburg, VA, USA.

OCCUPATIONAL APPLICATIONSInnovative tools that align with modern learners' preferences are essential for training in safety-critical professions like Air Traffic Control/Management. This study evaluated a Virtual Reality Visual Flight Rules 3D Map Visualization Tool designed to meet the Federal Aviation Administration's (FAA) modernization goals. The tool immerses trainee in contextually accurate environments, enhancing engagement and self-paced learning.

View Article and Find Full Text PDF

This paper focuses on the modeling, control, and simulation of an over-actuated hexacopter tilt-rotor (HTR). This configuration implies that two of the six actuators are independently tilted using servomotors, which provide high maneuverability and reliability. This approach is predicted to maintain zero pitch throughout the trajectory and is expected to improve the aircraft's steering accuracy.

View Article and Find Full Text PDF

Recently, aerial manipulations are becoming more and more important for the practical applications of unmanned aerial vehicles (UAV) to choose, transport, and place objects in global space. In this paper, an aerial manipulation system consisting of a UAV, two onboard cameras, and a multi-fingered robotic hand with proximity sensors is developed. To achieve self-contained autonomous navigation to a targeted object, onboard tracking and depth cameras are used to detect the targeted object and to control the UAV to reach the target object, even in a Global Positioning System-denied environment.

View Article and Find Full Text PDF

The efficient acquisition and processing of large-scale terrain data has always been a focal point in the field of photogrammetry. Particularly in complex mountainous regions characterized by clouds, terrain, and airspace environments, the window for data collection is extremely limited. This paper investigates the use of airborne millimeter-wave InSAR systems for efficient terrain mapping under such challenging conditions.

View Article and Find Full Text PDF

This study explores the impact of geographical origin, harvest time, and cooking on the volatile organic compound (VOC) profiles of wild and reared seabream from the Adriatic and Tyrrhenian Seas. A Proton Transfer Reaction-Time of Flight-Mass Spectrometry (PTR-ToF-MS) allowed for VOC profiling with high sensitivity and high throughput. A total of 227 mass peaks were identified.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!