Plants show a high degree of developmental plasticity in response to external cues, including day length and environmental stress. Water scarcity in particular can interfere with photoperiodic flowering, resulting in the acceleration of the switch to reproductive growth in several species, a process called drought escape. However, other strategies are possible and drought stress can also delay flowering, albeit the underlying mechanisms have never been addressed at the molecular level. We investigated these interactions in rice, a short day species in which drought stress delays flowering. A protocol that allows the synchronization of drought with the floral transition was set up to profile the transcriptome of leaves subjected to stress under distinct photoperiods. We identified clusters of genes that responded to drought differently depending on day length. Exposure to drought stress under floral-inductive photoperiods strongly reduced transcription of EARLY HEADING DATE 1 (Ehd1), HEADING DATE 3a (Hd3a) and RICE FLOWERING LOCUS T 1 (RFT1), primary integrators of day length signals, providing a molecular connection between stress and the photoperiodic pathway. However, phenotypic and transcriptional analyses suggested that OsGIGANTEA (OsGI) does not integrate drought and photoperiodic signals as in Arabidopsis, highlighting molecular differences between long and short day model species.

Download full-text PDF

Source
http://dx.doi.org/10.1111/pce.12760DOI Listing

Publication Analysis

Top Keywords

drought stress
16
day length
12
drought
8
floral transition
8
short day
8
stress
7
day
5
hd3a rft1
4
rft1 ehd1
4
ehd1 integrate
4

Similar Publications

Frequent and extreme drought exerts profound effects on vegetation growth and production worldwide. It is imperative to identify key genes that regulate plant drought resistance and to investigate their underlying mechanisms of action. Long-chain fatty acids and their derivatives have been demonstrated to participate in various stages of plant growth and stress resistance; however, the effects of medium-chain fatty acids on related functions have not been thoroughly studied.

View Article and Find Full Text PDF

The beneficial effects of priming technology are aimed at the promotion of growth and development and stress tolerance in plants. Different seed pre-treatment and vegetative priming approaches (osmo-, chemical, physical, hormonal, redox treatments) increase the level of nitric oxide (NO) being an active contributor to growth regulation and defence responses. On the other hand, seed pre-treatment or vegetative priming mainly with the NO donor, sodium nitroprusside (SNP) helps to mitigate different abiotic stresses like salinity, cold, drought, excess metals.

View Article and Find Full Text PDF

Spider silk, especially dragline silk from golden silk spiders (Trichonephila clavipes), is an excellent natural material with remarkable mechanical properties. Many studies have focused on the use of plants as biofactories for the production of recombinant spider silk. However, the effects of this material on the mechanical properties or physiology of transgenic plants remain poorly understood.

View Article and Find Full Text PDF

Overexpressing OsNF-YB12 elevated the content of jasmonic acid and impaired drought tolerance in rice.

Plant Sci

January 2025

Shanghai Agrobiological Gene Center, Shanghai, 201106 China; Key Laboratory of Grain Crop Genetic Resources Evaluation and Utilization, Ministry of Agriculture and Rural Affairs, Shanghai, 201106, China. Electronic address:

Nuclear factor Y (NF-Y) is an evolutionarily conserved heterotrimeric transcription factor in eukaryotes. In a previous study, OsNF-YB12 was confirmed to be associated with drought tolerance using the Ecotilling method. In this study, real-time quantitative RT-PCR revealed that OsNF-YB12 was induced by various abiotic stresses and phytohormones, with expression levels differing between leaves and roots.

View Article and Find Full Text PDF

Rheum tanguticum, an endemic species from the Qinghai-Xizang Plateau, is a significant perennial and medicinal plant recognized for its robust resistance to abiotic stresses, including drought, cold, and salinity. To advance the understanding of stress-response mechanisms in R. tanguticum, this study aimed to establish a reliable set of housekeeping genes as references for normalizing RT-qPCR gene expression analyses.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!