A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

How Knowledge of Pathogen Population Biology Informs Management of Septoria Tritici Blotch. | LitMetric

How Knowledge of Pathogen Population Biology Informs Management of Septoria Tritici Blotch.

Phytopathology

First author: Plant Pathology, Institute of Integrative Biology, ETH Zurich, CH-8092 Zurich, Switzerland; and second author: Department of Botany and Plant Pathology, Oregon State University, Corvallis 97331.

Published: September 2016

Zymoseptoria tritici (previously Mycosphaerella graminicola) causes Septoria tritici blotch (STB) on wheat. The population biology of Z. tritici has been exceptionally well characterized as a result of intensive studies conducted over nearly 30 years. These studies provided important insights into the biology, epidemiology and evolutionary history of Z. tritici that will prove useful for management of STB. The well-documented, rapid adaptation of Z. tritici populations to fungicide applications and deployment of wheat cultivars carrying both major gene and quantitative resistance reflects the high evolutionary potential predicted by the large effective population size, high degree of gene flow and high levels of recombination found in field populations of Z. tritici globally. QST studies that assessed the global diversity for several important quantitative traits confirmed the adaptive potential of field populations and laid the groundwork for quantitative trait loci (QTL) mapping studies. QTL mapping elucidated the genetic architecture of each trait and led to identification of candidate genes affecting fungicide resistance, thermal adaptation, virulence, and host specialization. The insights that emerged through these analyses of Z. tritici population biology can now be used to generate actionable disease management strategies aimed at sustainably reducing losses due to STB. The high evolutionary potential found in field populations of Z. tritici requires deployment of a corresponding dynamically diverse set of control measures that integrate cultural, chemical, biological and resistance breeding strategies. In this review, we describe and prioritize STB control strategies based on current knowledge of Z. tritici population biology and propose a future research agenda oriented toward long-term STB management.

Download full-text PDF

Source
http://dx.doi.org/10.1094/PHYTO-03-16-0131-RVWDOI Listing

Publication Analysis

Top Keywords

population biology
16
field populations
12
tritici
10
septoria tritici
8
tritici blotch
8
high evolutionary
8
evolutionary potential
8
populations tritici
8
potential field
8
qtl mapping
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!