Mass spectrometry has become a routine experimental tool for proteomic biomarker analysis of human blood samples, partly due to the large availability of informatics tools. As one of the most common protein post-translational modifications (PTMs) in mammals, protein glycosylation has been observed to alter in multiple human diseases and thus may potentially be candidate markers of disease progression. While mass spectrometry instrumentation has seen advancements in capabilities, discovering glycosylation-related markers using existing software is currently not straightforward. Complete characterization of protein glycosylation requires the identification of intact glycopeptides in samples, including identification of the modification site as well as the structure of the attached glycans. In this paper, we present GlycoSeq, an open-source software tool that implements a heuristic iterated glycan sequencing algorithm coupled with prior knowledge for automated elucidation of the glycan structure within a glycopeptide from its collision-induced dissociation tandem mass spectrum. GlycoSeq employs rules of glycosidic linkage as defined by glycan synthetic pathways to eliminate improbable glycan structures and build reasonable glycan trees. We tested the tool on two sets of tandem mass spectra of N-linked glycopeptides cell lines acquired from breast cancer patients. After employing enzymatic specificity within the N-linked glycan synthetic pathway, the sequencing results of GlycoSeq were highly consistent with the manually curated glycan structures. Hence, GlycoSeq is ready to be used for the characterization of glycan structures in glycopeptides from MS/MS analysis. GlycoSeq is released as open source software at https://github.com/chpaul/GlycoSeq/ .
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4899231 | PMC |
http://dx.doi.org/10.1021/acs.analchem.5b04858 | DOI Listing |
Adv Clin Chem
January 2025
Department of Chemistry, Center for Innovative Technology, Institute of Chemical Biology, Institute for Integrative Biosystems Research and Education, Vanderbilt-Ingram Cancer Center, Vanderbilt University, Nashville, TN, United States. Electronic address:
Advancements in clinical chemistry have major implications in terms of public health, prompting many clinicians to seek out chemical information to aid in diagnoses and treatments. While mass spectrometry (MS) and hyphenated-MS techniques such as LC-MS or tandem MS/MS have long been the analytical methods of choice for many clinical applications, these methods routinely demonstrate difficulty in differentiating between isomeric forms in complex matrices. Consequently, ion mobility spectrometry (IM), which differentiates molecules on the basis of size, shape, and charge, has demonstrated unique advantages in the broad application of stand-alone IM and hyphenated IM instruments towards clinical challenges.
View Article and Find Full Text PDFFree Radic Biol Med
January 2025
Division of Neonatology, University & Polytechnic Hospital La Fe, Avda Fernando Abril Martorell 106, 46026 Valencia, Spain; Neonatal Research Group, Health Research Institute Hospital La Fe (IISLAFE), Avda Fernando Abril Martorell 106, 46026 Valencia, Spain; Spanish Network in Maternal, Neonatal, Child and Developmental Health Research (RICORS SAMID) (RD24/0013/0014), Instituto de Salud Carlos III, Madrid, Spain. Electronic address:
Inhaled nitric oxide (iNO) is a selective pulmonary vasodilator that is used as a treatment for persistent pulmonary hypertension in neonates (PPHN) with hypoxic respiratory failure. The generation of reactive oxygen and nitrogen species might induce oxidative/nitrosative damage to multiple organs. There is an increasing scientific and clinical interest in the determination of specific biomarkers to measure the degree of oxidative/nitrosative stress in non-invasively collected biofluids.
View Article and Find Full Text PDFAnal Chem
January 2025
Center for Translational Biomedical Research, University of North Carolina at Greensboro, Kannapolis, North Carolina 28081, United States.
Double bond (C═C) position isomerism in unsaturated lipids can indicate abnormal lipid metabolism and pathological conditions. Novel chemical derivatization and mass spectrometry-based techniques are under continuing development to provide more accurate elucidation of lipid structure in finer structural detail. Here, we introduce a new ion chemistry for annotating lipid C═C positions, which is highly efficient for liquid chromatography-mass spectrometry-based lipidomics.
View Article and Find Full Text PDFJ Agric Food Chem
January 2025
Zhengzhou Tobacco Research Institute of CNTC, Fengyang Street #2, Zhengzhou, Henan 450001, PR China.
The occurrence of off-flavor in osmanthus absolutes has emerged as a significant concern that could hinder its broad market acceptance and associated economic development. In this study, key off-flavor molecules in industrial osmanthus absolute were identified through sensomics and chemometric approaches. A group of 10 off-flavor (OF) samples, eliciting smoky/phenolic, sweaty/sour, and spicy odors, were compared with 10 pleasant aroma (PA) samples through various analyses, including overall aroma assessment, comprehensive chemical profiling, aroma extract dilution analysis (AEDA), and orthogonal partial least-squares-discriminant analysis (OPLS-DA).
View Article and Find Full Text PDFMol Genet Metab Rep
March 2025
Newborn Screening Center, Xuzhou Maternity and Child Health Care Hospital, Xuzhou, China.
Background: Very long-chain acyl-coenzyme A dehydrogenase deficiency (VLCADD) is a rare autosomal recessive disease associated with variants in the gene.
Methods: In December 2021, a neonate with VLCADD was identified via newborn screening in Xuzhou, China. Genetic testing and genetic family verification were performed via high-throughput sequencing combined with Sanger sequencing.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!