Objective: The purpose of this study was to investigate the effects of carbon dioxide (CO2) and Erbium-doped yttrium aluminum garnet (Er:YAG) laser irradiations on the shear bond strength (SBS) of differently sintered zirconia ceramics to resin cement.
Materials And Methods: Eighty zirconia specimens were prepared, sintered in two different periods (short = Ss, long = Ls), and divided into four treatment groups (n = 10 each). These groups were (a) untreated (control), (b) Er:YAG laser irradiated with 6 W power for 5 sec, (c) CO2 laser with 2 W power for 10 sec, (d) CO2 laser with 4 W power for 10 sec. Scanning electron microscope (SEM) images were recorded for each of the eight groups. Eighty composite resin discs (3 × 3 mm) were fabricated and cemented with an adhesive resin cement to ceramic specimens. The SBS test was performed after specimens were stored in water for 24 h by an universal testing machine at a crosshead speed of 1 mm/min. Data were statistically analyzed with two way analysis of variance (ANOVA) and Tukey honest significant difference (HSD) test (α = 0.05).
Results: According to the ANOVA, the sintering time, surface treatments and their interaction were statistically significant (p < 0.05). Although each of the laser-irradiated groups were significantly higher than the control groups, there was no statistically significant difference among them (p > 0.05).
Conclusions: Variation in sintering time from 2.5 to 5.0 h may have influenced the SBS of Yttrium-stabilized tetragonal zirconia polycrystalline (Y-TZP) ceramics. Although CO2 and Er:YAG laser irradiation techniques may increase the SBS values of both tested zirconia ceramics, they are recommended for clinicians as an alternative pretreatment method.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1089/pho.2015.4064 | DOI Listing |
J Prosthet Dent
January 2025
Associate Professor and Director of Student Research, Division of Restorative and Prosthetic Dentistry, College of Dentistry, The Ohio State University, Columbus, OH. Electronic address:
Statement Of Problem: Currently there is no regulatory requirement or international standard for the wear resistance of dental materials and therefore no need to test prior to market launch.
Purpose: The purpose of this in vitro study was to evaluate and compare the total volumetric wear characteristics of milled polymer infiltrated ceramic network (MPICN) and printed polymer resin (PPR) as substrates opposing five antagonists, human enamel (EN), lithium disilicate (LD), zirconia (ZR), MPICN, and PPR, and to evaluate and compare the volumetric wear of these same materials as antagonists.
Material And Methods: Ten of each antagonist for a total of 50 EN, LD (IPS e.
Sci Rep
January 2025
SANKEN, Osaka University, 8-1 Mihogaoka, Ibaraki, 567-0047, Osaka, Japan.
Hydroxyapatite/zirconia (HAP/ZrO) composites were fabricated via the low-temperature mineralization sintering process (LMSP) at an extremely low temperature of 130 °C to enhance the mechanical properties of HAP and broaden its practical applications. For this purpose, 5-20 vol% calcia-stabilized ZrO were introduced into HAP, and HAP/ZrO nanoparticles, mixed with simulated body fluid, were densified under a uniaxial pressure of 800 MPa at 130 °C. At 10 vol% ZrO, the relative density of the HAP/ZrO composite was determined to be 88.
View Article and Find Full Text PDFInorg Chem
January 2025
Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, Innovis #08-03, Singapore 138634, Republic of Singapore.
High-entropy ceramics hold promise for application as thermal barrier coating materials. However, a key challenge in practical applications lies in the low fracture toughness compared to that of yttria-stabilized zirconia (YSZ). Herein, we designed (Hf,Zr,Ce,)O-AlO (M = Y, Ca, and Gd) ceramic composites by following a set of fundamental guidelines.
View Article and Find Full Text PDFBMC Oral Health
January 2025
Department of Cariology and Operative Dentistry, Graduate School of Medical and Dental Sciences, Institute of Science Tokyo, 1-5-45 Yushima, Bunkyo-Ku, Tokyo, 113-8549, Japan.
Background: Resin cements often require substrate-specific pretreatment. Recently, universal adhesive systems have been introduced, simplifying procedures by eliminating the need for multiple adhesives and offering options that do not require light curing. This study investigated the bonding performance of universal adhesive systems combined with dual-polymerising resin cements on enamel, dentin, zirconia, lithium disilicate ceramics (LDS), and resin blocks.
View Article and Find Full Text PDFJ Mech Behav Biomed Mater
January 2025
Post-Graduate Program in Oral Sciences (Prosthodontics Unit), Faculty of Dentistry, Federal University of Santa Maria (UFSM), Santa Maria, Rio Grande do Sul, Brazil. Electronic address:
This study evaluated the effect of substrate core materials and occlusal contact patterns on the fatigue mechanical behavior and stress distribution of single-unit ceramic crowns. One hundred and twenty monolithic crowns were fabricated from zirconia (YZ - IPS e.max ZirCAD, Ivoclar), lithium disilicate (LD - IPS e.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!