Dimeric aryl(hydro)boranes can provide suitable platforms for the synthesis of boron-containing graphene flakes through reductive B-B coupling. Two-electron reduction of 1,2:1,2-bis(4,4'-di-tert-butyl-2,2'-biphenylylene)diborane(6) (4) with LiNaph/THF establishes a B-B σ bond but can be accompanied by substituent redistribution. In the singly rearranged product, Li2[6], only one 1,2-phenyl shift has occurred. The doubly ring-contracted product, Li2[7], consists of two 9H-9-borafluorenyl moieties that are linked via their boron atoms. When the amount of LiNaph/THF is increased to 4 equiv, Li2[6] is subsequently observed as the dominant species. Addition of 11 equiv of LiNaph/THF results in over-reduction with hydride elimination to afford the doubly boron-doped dibenzo[g,p]chrysene Li2[1]. In contrast, excess KC8 reduces 4 to the corresponding dihydro-dibenzo[g,p]chrysene, K2[5], with a trans-HB-BH core. Hydride abstraction from K2[5] with 1 equiv of 4 leads to K[8], in which the central B-B bond is bridged by a single hydrogen atom. K[8] is also obtained upon treatment of 4 with 1 equiv of KC8. All products have been characterized by multinuclear NMR spectroscopy and X-ray crystallography.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/jacs.6b02303 | DOI Listing |
J Mol Model
January 2025
Institute of Molecular Science, Shanxi University, Taiyuan, 030006, China.
Context: Inspired by the newly synthesized endohedral fullerene T CH@C (1) and based on extensive density functional theory calculations, we predict herein a series of endohedral borafullerenes C CH@BC (4), T BH@BC (5), C HO@BC (6), C NH@BC (7), and T C@BC (8) which possess a BC (3) shell isovalent with C, with the neutral D C@BC (9) obtained from C@BC (8) by symmetric C─B substitutions. Detailed adaptive natural density partitioning (AdNDP) bonding analyses and iso-chemical shielding surfaces (ICSSs) calculations indicate that these core-shell species are spherically aromatic in nature, rendering high stability to the systems. More interestingly, based on the calculated effective donor-acceptor interaction between LP(O) → LV(B@BC) in HO@BC (6), we propose the concept of boron bond (BB) in chemistry which is defined as the in-phase orbital overlap between an electronegative atom A as lone-pair (LP) donor and an electron-deficient boron atom with a lone vacant (LV) orbital as LP acceptor.
View Article and Find Full Text PDFAngew Chem Int Ed Engl
January 2025
Department of Chemistry, Brown University, Providence, Rhode Island 02912, United States.
Despite major progress in the investigation of boron cluster anions, direct experimental study of neutral boron clusters remains a significant challenge because of the difficulty in size selection. Here we report a size-specific study of the neutral B cluster using threshold photoionization with a tunable vacuum ultraviolet free electron laser. The ionization potential of B is measured to be 8.
View Article and Find Full Text PDFNanomaterials (Basel)
December 2024
School of Integrated Circuits and Electronics & Yangtze Delta Region Academy, Beijing Institute of Technology (BIT), Beijing 100081, China.
In this study, we explore the substrate-mediated control of self-assembly behavior in diboron molecules (CHBO, BCat) using scanning tunneling microscopy (STM). The structural transformation of BCat molecules from one-dimensional (1D) molecular chains to two-dimensional (2D) molecular arrays was achieved by changing the substrate from Au(111) to bilayer graphene (BLG), highlighting the key role of substrate interactions in determining the assembly structure. Notably, the B-B bond in the molecular arrays on BLG is distinctly pronounced, reflecting a more refined molecular resolution with distinct electronic states than that on Au(111).
View Article and Find Full Text PDFMicrob Pathog
February 2025
Department of Pharmaceutics, Jamia Salafiya Pharmacy College, Malappuram, Kerala 673 637, India.
Chem Sci
October 2024
Shenzhen Grubbs Institute and Department of Chemistry, Southern University of Science and Technology Shenzhen 518055 China
Reactions of -carborane-fused diborane(4) with 3-diazirines led to the complete cleavage of the N[double bond, length as m-dash]N bond, with one nitrogen atom being incorporated into the B-B bond. The molecular and electronic structures of the resultant borylnitrogen compounds were confirmed through single-crystal X-ray analyses and computational studies. The related reaction mechanism was investigated using DFT calculations.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!