Chondritic xenon in the Earth's mantle.

Nature

Centre de Recherches Pétrographiques et Géochimiques, UMR 7358, Université de Lorraine, CNRS, 54501 Vandoeuvre-lès-Nancy, France.

Published: May 2016

Noble gas isotopes are powerful tracers of the origins of planetary volatiles, and the accretion and evolution of the Earth. The compositions of magmatic gases provide insights into the evolution of the Earth's mantle and atmosphere. Despite recent analytical progress in the study of planetary materials and mantle-derived gases, the possible dual origin of the planetary gases in the mantle and the atmosphere remains unconstrained. Evidence relating to the relationship between the volatiles within our planet and the potential cosmochemical end-members is scarce. Here we show, using high-precision analysis of magmatic gas from the Eifel volcanic area (in Germany), that the light xenon isotopes identify a chondritic primordial component that differs from the precursor of atmospheric xenon. This is consistent with an asteroidal origin for the volatiles in the Earth's mantle, and indicates that the volatiles in the atmosphere and mantle originated from distinct cosmochemical sources. Furthermore, our data are consistent with the origin of Eifel magmatism being a deep mantle plume. The corresponding mantle source has been isolated from the convective mantle since about 4.45 billion years ago, in agreement with models that predict the early isolation of mantle domains. Xenon isotope systematics support a clear distinction between mid-ocean-ridge and continental or oceanic plume sources, with chemical heterogeneities dating back to the Earth's accretion. The deep reservoir now sampled by the Eifel gas had a lower volatile/refractory (iodine/plutonium) composition than the shallower mantle sampled by mid-ocean-ridge volcanism, highlighting the increasing contribution of volatile-rich material during the first tens of millions of years of terrestrial accretion.

Download full-text PDF

Source
http://dx.doi.org/10.1038/nature17434DOI Listing

Publication Analysis

Top Keywords

earth's mantle
12
mantle
10
mantle atmosphere
8
chondritic xenon
4
earth's
4
xenon earth's
4
mantle noble
4
noble gas
4
gas isotopes
4
isotopes powerful
4

Similar Publications

Interactions between magma oceans and overlying atmospheres on young rocky planets leads to an evolving feedback of outgassing, greenhouse forcing, and mantle melt fraction. Previous studies have predominantly focused on the solidification of oxidized Earth-similar planets, but the diversity in mean density and irradiation observed in the low-mass exoplanet census motivate exploration of strongly varying geochemical scenarios. We aim to explore how variable redox properties alter the duration of magma ocean solidification, the equilibrium thermodynamic state, melt fraction of the mantle, and atmospheric composition.

View Article and Find Full Text PDF

Corrigendum to "Rare earth elements in the upstream of Yangtze River Delta: Spatio-temporal distributions, sources and speciations" [Mar. Pollut. Bull. 209 (2024) 117103].

Mar Pollut Bull

December 2024

CAS Key Laboratory of Crust-Mantle Materials and Environment, School of Earth and Space Sciences, University of Science and Technology of China, Hefei, Anhui 230026, China; State Key Laboratory of Loess and Quaternary Geology, Institute of Earth Environment, The Chinese Academy of Sciences, Xi'an, Shaanxi 710075, China.

View Article and Find Full Text PDF

Mantle oxidation by sulfur drives the formation of giant gold deposits in subduction zones.

Proc Natl Acad Sci U S A

December 2024

Frontiers Science Center for Deep-time Digital Earth, State Key Laboratory of Geological Processes and Mineral Resources, School of Earth Sciences and Resources, China University of Geosciences, Beijing 100083, China.

Oxidation of the sub-arc mantle driven by slab-derived fluids has been hypothesized to contribute to the formation of gold deposits in magmatic arc environments that host the majority of metal resources on Earth. However, the mechanism by which the infiltration of slab-derived fluids into the mantle wedge changes its oxidation state and affects Au enrichment remains poorly understood. Here, we present the results of a numerical model that demonstrates that slab-derived fluids introduce large amounts of sulfate (S) into the overlying mantle wedge that increase its oxygen fugacity by up to 3 to 4 log units relative to the pristine mantle.

View Article and Find Full Text PDF

The Moon formed 4.5 Ga ago through a collision between proto-Earth and a planetesimal known as Theia. The compositional similarity of Earth and Moon puts tight limits on the isotopic contrast between Theia and proto-Earth, or it requires intense homogenization of Theia and proto-Earth material during and in the aftermath of the Moon-forming impact, or a combination of both.

View Article and Find Full Text PDF

A deeper and hotter Martian core-mantle differentiation inferred from FeO partitioning.

Sci Bull (Beijing)

December 2024

State Key Laboratory of Lithospheric and Environmental Coevolution, University of Science and Technology of China, Hefei 230026, China; Deep Space Exploration Laboratory/School of Earth and Space Sciences, University of Science and Technology of China, Hefei 230026, China.

The core-mantle differentiation process plays a pivotal role in redistributing material on a massive scale, shaping the long-term evolution of rocky planets. Understanding this process is crucial for gaining insights into the accretion and evolution of planets like Mars. However, the details of Mars's core-mantle differentiation remain poorly understood due to limited compositional data for its core and mantle.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!