Chemical and mineralogical characterization of chromite ore processing residue from two recent Indian disposal sites.

Chemosphere

Soil Geography/Soil Science, Department of Geosciences, University of Cologne, Albertus-Magnus-Platz, 50923 Cologne, Germany. Electronic address:

Published: July 2016

Chromite ore processing residue (COPR) is a hazardous waste. Nevertheless, deposition of COPR in uncontrolled surface landfills is still common practice in some countries. Whereas old (between at least 40 and 180 years) COPR from the temperate zone has been intensively investigated, information on COPR in other regions is restricted. Relatively young (<25 years) COPR samples obtained from two abandoned landfill sites in India were investigated by a modified total microwave digestion method, X-ray powder diffraction (XRPD), and scanning electron microscopy (SEM) in order to determine their chemical and mineralogical nature. By the use of microwave digestion with acid mixtures of HNO3, H3PO4, and HBF4 (5:3:2 vol), COPR was completely dissolved and element contents similar to those obtained by X-ray fluorescence were found. Total Cr contents of the two COPR accounted for 81 and 74 g kg(-1), of which 20 and 13% were present in the carcinogenic hexavalent form (CrVI). Apart from the common major mineral phases present in COPR reported earlier, a further Cr host mineral, grimaldiite [CrO(OH)], could be identified by XRPD and SEM. Additionally, well soluble Na2CrO4 was present. Improving the effectiveness of chromite ore processing and preventing the migration of Cr(VI) into water bodies are the main challenges when dealing with these COPR.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.chemosphere.2016.04.009DOI Listing

Publication Analysis

Top Keywords

chromite ore
8
ore processing
8
processing residue
8
chemical mineralogical
4
mineralogical characterization
4
characterization chromite
4
residue indian
4
indian disposal
4
disposal sites
4
sites chromite
4

Similar Publications

To further improve the leaching behavior of chromite in the submolten salt medium of NaOH-HO, a microwave roasting pretreatment for chromite is proposed in the present work. Effects of the roasting pretreatment modes and reaction parameters on the leaching rate of Cr were systematically investigated. The results showed that the leaching rate of Cr from the chromite ore could be greatly boosted after microwave roasting.

View Article and Find Full Text PDF

Chromite ore processing residue (COPR) is a typical hazardous waste, which contains Cr(vi) and poses a great threat to the ecological environment and human health. In this study, solidification/stabilization (S/S) of COPR was carried out by using blast furnace slag (BFS) and fly ash (FA) to prepare alkali-activated cementitious materials (AACM). The influence of different factors (water glass modulus, liquid-solid ratio, alkali-solid content and curing temperature) on compressive strength was investigated by single-factor experiment.

View Article and Find Full Text PDF

This research investigates the adsorption potential of chrysotile and lizardite, two minerals derived from chromite ore wastes, for the uptake of Methylene Blue (MB) dye from waste streams. The characterization of these minerals involves XRD, XRF, FTIR, and SEM. Results confirm the dominance of polymorphic magnesium silicate minerals, specifically chrysotile and lizardite, in the samples.

View Article and Find Full Text PDF

Mechanism of the Direct Reduction of Chromite Process as a Clean Ferrochrome Technology.

ACS Eng Au

February 2024

CanmetMINING, Natural Resources Canada, 555 Booth Street, Ottawa, ON K1A 0G1, Canada.

Direct reduction of chromite (DRC) is a promising alternative process for ferrochrome production with the potential to significantly reduce energy consumption and greenhouse gas emissions compared to conventional smelting. In DRC, chromium (Cr) and iron (Fe) from chromite ore incongruently dissolve into a molten salt, which facilitates mass transfer to a carbon (C) reductant where in situ metallization occurs. Consequently, ferrochrome is produced below the slag melting temperatures, achieving substantial energy savings relative to smelting.

View Article and Find Full Text PDF

Field-scale assessment of soil, water, plant, and soil microbiome in and around Rania-Khan Chandpur Chromium contaminated site, India.

J Hazard Mater

April 2024

Catalytic Reaction Engineering Laboratory, Department of Chemical Engineering, Indian Institute of Technology (IIT) Delhi, Hauz Khas, New Delhi 110016, India; Indian Institute of Technology (IIT) Roorkee, Roorkee, Uttarakhand 247667, India.

Rania-Khan Chandpur site, (Kanpur Dehat, Uttar Pradesh, India), one of the highly Chromium (Cr) contaminated sites in India due to Chromite Ore Processing Residue (COPR), has been investigated at the field-scale. We found that the area around the COPR dumps was hazardously contaminated with the Cr where its concentrations in the surface water and groundwater were > 40 mgL, its maximum contents in the COPRs and in the soils of the adjoining lands were 9.6 wt% and 3.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!