Olivine NaFePO4 has recently attracted the attention of the scientific community as a promising cathode material for Na-ion batteries. In this work we combine density functional theory (DFT) calculations and high resolution synchrotron X-ray diffraction (HRXRD) experiments to study the phase stability of NaxFePO4 along the whole range of sodium compositions (0 ≤x≤ 1). DFT calculations reveal the existence of two intermediate structures governing the phase stability at x = 2/3 and x = 5/6. This is in contrast to isostructural LiFePO4, which is a broadly used cathode in Li-ion batteries. Na2/3FePO4 and Na5/6FePO4 ground states both align vacancies diagonally within the ab plane, coupled to a Fe(2+)/Fe(3+) alignment. HRXRD data for NaxFePO4 (2/3 < x < 1) materials show common superstructure reflections up to x = 5/6 within the studied compositions. The computed intercalation voltage profile shows a voltage difference of 0.16 V between NaFePO4 and Na2/3FePO4 in agreement with the voltage discontinuity observed experimentally during electrochemical insertion.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1039/c6cp00762g | DOI Listing |
Phys Rev Lett
December 2024
Key Laboratory for Laser Plasmas and School of Physics and Astronomy, and Collaborative Innovation Center of IFSA, Shanghai Jiao Tong University, Shanghai 200240, China.
Time-dependent density functional theory (TDDFT) is widely used for understanding and predicting properties and behaviors of matter. As one of the fundamental theorems in TDDFT, Van Leeuwen theorem [Phys. Rev.
View Article and Find Full Text PDFPhys Rev Lett
December 2024
Laboratoire PHENIX, Sorbonne Université, CNRS, (Physico-Chimie des Electrolytes et Nanosystèmes Interfaciaux), 4 Place Jussieu, 75005 Paris, France.
In recent years, the theoretical description of electrical noise and fluctuation-induced effects in electrolytes has gained renewed interest, enabled by stochastic field theories like stochastic density functional theory (SDFT). Such models, however, treat solvents implicitly, ignoring their generally polar nature. In the present study, starting from microscopic principles, we derive a fully explicit SDFT theory that applies to ions in a polar solvent.
View Article and Find Full Text PDFPhys Rev Lett
December 2024
Johns Hopkins University, Institute for Quantum Matter and Department of Physics and Astronomy, Baltimore, Maryland 21218, USA.
The tetragonal heavy-fermion superconductor CeRh_{2}As_{2} (T_{c}=0.3 K) exhibits an exceptionally high critical field of 14 T for B∥c. It undergoes a field-driven first-order phase transition between superconducting states, potentially transitioning from spin-singlet to spin-triplet superconductivity.
View Article and Find Full Text PDFInorg Chem
January 2025
NUPOM Lab, Chemistry, School of Natural and Environmental Sciences, Newcastle University, Newcastle upon Tyne NE1 7RU, U.K.
An understanding of proton transfer and migration at the surfaces of solid metal oxides and related molecular polyoxometalates (POMs) and metal alkoxides is crucial for the development of reactivity involving protonation or the absorption/binding of water. In this work, the hydrolysis of alkoxido Ti- and Sn-substituted Lindqvist [(MeO)MWO] (M = Ti, ; M = Sn, ) and Keggin [(MeO)MPWO] (M = Ti, ; M = Sn, ) type polyoxometalates (POMs) to hydroxido derivatives and subsequent condensation to μ-oxido species has been investigated in detail to provide insight into proton transfer reactions in these molecular metal oxide systems. Solution NMR studies revealed the dependence of reactions not only on the nature of the heteroatom (Ti or Sn) but also on the type of lacunary (W or PW) POM and also on the solvent (MeCN or DMSO).
View Article and Find Full Text PDFMater Horiz
January 2025
School of Materials Scicence and Engineering, South China University of Technology, Guangzhou, 510640, China.
Multifunctional devices based on van der Waals heterojunctions have drawn significant attention owing to their portable size, low power consumption and various application scenarios. However, high fabrication equipment requirements, complex device structures and limited operating conditions hinder their potential value. Herein, multifunctional UV photodetect-memristors based on GaS/graphene/GaN van der Waals heterojunctions area selective deposition have been proposed for the first time.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!