Two experimental investigations were made in order to reduce background counts in neutron detectors. Each investigation relied upon the fact that neutron background is largely due to cosmic ray interactions with the air and ground. The first attempt was to look at neutron arrival times. Neutron events close in time were taken to have been of a common origin due to cosmic rays. The second investigation was similar, but based on coincident neutron/muon events. The investigations showed only a small effect, not practical for the suppression of neutron background.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4656007 | PMC |
http://dx.doi.org/10.6028/jres.112.007 | DOI Listing |
Sci Rep
January 2025
Los Alamos National Laboratory, Los Alamos, NM, 87544, USA.
Detecting shielded special nuclear material, such as nuclear explosives, is a difficult challenge pursued by non-proliferation, anti-terrorism, and nuclear security programs worldwide. Interrogation with intense fast-neutron pulses is a promising method to characterize concealed nuclear material rapidly but is limited by suitable source availability and proven instrumentation. In this study we have pioneered a demonstration of such an interrogation method using a high-intensity, short-pulse, laser-driven neutron source that offers potential benefits compared to conventional neutron sources.
View Article and Find Full Text PDFEJNMMI Radiopharm Chem
December 2024
CERN, Geneva, Switzerland.
Background: In the field of medical and scientific research, radionuclides are used to investigate various physiological and pathological processes. PRISMAP - the European medical radionuclide programme was created to bring together production facilities including intense neutron sources, an isotope mass separation facility, high-power accelerators, biomedical research institutes, and hospitals to support medical research. The aim of this article is to introduce readers with the current status of innovative radionuclides in Europe.
View Article and Find Full Text PDFPolymers (Basel)
December 2024
Departamento de Ciencia e Ingeniería de Materiales e Ingeniería Química, Universdad Carlos III de Madrid, Avenida de la Universidad, 30, 28911 Leganés, Spain.
This work describes the effects of using neutron irradiation on cellulose and non-destructive methods to analyze linen fabrics of high heritage value. For this purpose, 8 samples were irradiated with increasing doses of neutrons and gamma rays up to 166 kGy of total dose. The samples were characterized by techniques such as ultraviolet luminescence, attenuated total reflectance Fourier transform infrared (ATR-FTIR) spectroscopy, Raman spectroscopy, and the nuclear magnetic resonance (NMR) technique.
View Article and Find Full Text PDFPhys Med
December 2024
Dosimetry for Radiation Therapy and Diagnostic Radiology, Physikalisch-Technische Bundesanstalt (PTB), Braunschweig 38116, Germany; Metrology Research Center, National Research Council of Canada, 1200 Montreal Road, Ottawa, ON, K1A0R6, Canada.
Background: FLASH radiotherapy necessitates the development of advanced Quality Assurance methods and detectors for accurate monitoring of the radiation field. This study introduces enhanced time-resolution detection systems and methods used to measure the delivered number of pulses, investigate temporal structure of individual pulses and dose-per-pulse (DPP) based on secondary radiation particles produced in the experimental room.
Methods: A 20 MeV electron beam generated from a linear accelerator (LINAC) was delivered to a water phantom.
J Vasc Access
December 2024
Department of Medicine and Surgery, University of Milan-Bicocca, Monza, Italy.
Background: Needle-free connectors (NFCs) are recommended as closure systems for peripheral and central vascular catheters to reduce needlestick injuries and infections, while potentially reducing blood reflux. However, their performance in short-term dialysis catheters has never been evaluated. The aim of this study was to evaluate the backflow associated with two NFCs (Neutron™ and Tego™) compared to the standard closure.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!