We review the recent developments in the field of ultrafast Cherenkov fiber lasers. Two essential properties of such laser systems - broad wavelength tunability and high efficiency of Cherenkov radiation wavelength conversion are discussed. The exceptional performance of the Cherenkov fiber laser systems are highlighted - dependent on the realization scheme, the Cherenkov lasers can generate the femtosecond output tunable across the entire visible and even the UV range, and for certain designs more than 40 % conversion efficiency from the pump to Cherenkov signal can be achieved. The femtosecond Cherenkov laser with all-fiber architecture is presented and discussed. Operating in the visible range, it delivers 100-200 fs wavelength-tunable pulses with multimilliwatt output power and exceptionally low noise figure an order of magnitude lower than the traditional wavelength tunable supercontinuum-based femtosecond sources. The applications for Cherenkov laser systems in practical biophotonics and biomedical applications, such as bio-imaging and microscopy, are discussed.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4839584 | PMC |
http://dx.doi.org/10.1088/0022-3727/49/2/023001 | DOI Listing |
Chemphyschem
January 2025
University of Minnesota Twin Cities, Chemical Engineering and Materials Science, 421 Washington Avenue SE, 55455, Minneapolis, UNITED STATES OF AMERICA.
Broader adoption of 4D ultrafast electron microscopy (UEM) for the study of chemical, materials, and quantum systems is being driven by development of new instruments as well as continuous improvement and characterization of existing technologies. Perhaps owing to the still-high barrier to entry, the full range of capabilities of laser-driven 4D UEM instruments has yet to be established, particularly when operated at extremely low beam currents (~fA). Accordingly, with an eye on beam stability, we have conducted particle tracing simulations of unconventional off-axis photoemission geometries in a UEM equipped with a thermionic-emission gun.
View Article and Find Full Text PDFArch Dermatol Res
January 2025
Department of Dermatology, Venereology, and Andrology, Faculty of Medicine, Al-Azhar University, Cairo, Egypt.
Atrophic acne scars present a significant therapeutic challenge. While subcision with various adjunctive treatments, including fractional CO₂ lasers and polydioxanone (PDO) threads, has been employed for scar remodeling, comparative evidence on their efficacy remains limited. This study aims to compare the clinical efficacy and patient satisfaction between subcision with fractional CO₂ laser and subcision with PDO screw threads in managing atrophic acne scars.
View Article and Find Full Text PDFArch Dermatol Res
January 2025
Department of Dermatology, Medical Research and Clinical Studies Institute, National Research Centre, Giza, Egypt.
Palmar hyperhidrosis is common condition that is challenging to treat. Nonsurgical treatments include topical antiperspirants, iontophoresis, anticholinergic drugs and botulinum toxin injections. To evaluate the safety and efficacy of ablative fractional laser therapy, combined with topically applied botulinum toxin versus its injection for the treatment of hyperhidrosis.
View Article and Find Full Text PDFJ Comput Chem
January 2025
Beijing National Laboratory for Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing, China.
Various electronically excited states and the feasibility of direct laser cooling of SH, SeH, and TeH are investigated using the highly accurate ab initio and dynamical methods. For the detailed calculations of the seven low-lying Λ-S states of SH, we utilized the internally contracted multireference configuration interaction approach, considering the spin-orbit coupling (SOC) effects. Our calculated spectroscopic constants are in very good agreement with the available experimental results.
View Article and Find Full Text PDFCrit Rev Anal Chem
January 2025
College of Electrical Engineering, Naval University of Engineering, Wuhan, P.R. China.
Laser-induced breakdown spectroscopy (LIBS) technology has been widely used in many fields including industrial production, space exploration, medical analysis, environmental pollution detection, etc. However, the stability problem of LIBS is one of the core problems for its further development. Solutions in the LIBS field in recent decades were summarized and classified from the physical mechanism and analysis method.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!