Several types of hair loss result from the inability of hair follicles to initiate the anagen phase of the hair regeneration cycle. Modulating signaling pathways in the hair follicle niche can stimulate entry into the anagen phase. Despite much effort, stem cell-based or pharmacological therapies to activate the hair follicle niche have not been successful. Here, we set out to test the effect of neural stem cell (NSC) extract on the hair follicle niche for hair regrowth. NSC extracts were applied to the immortalized cell lines HaCaT keratinocytes and dermal papilla cells (DPCs) and the shaven dorsal skin of mice. Treatment with NSC extract dramatically improved the growth of HaCaT keratinocytes and DPCs. In addition, NSC extract enhanced the hair growth of the shaven dorsal skin of mice. In order to determine the molecular signaling pathways regulated by NSCs, we evaluated the expression levels of multiple growth and signaling factors, such as insulin-like growth factor-1 (IGF-1), hepatocyte growth factor (HGF), keratinocyte growth factor (KGF), vascular endothelial growth factor (VEGF), transforming growth factor-β (TGF-β), and bone morphogenetic protein (BMP) family members. We found that treatment with an NSC extract enhanced hair growth by activating hair follicle niches via coregulation of TGF-β and BMP signaling pathways in the telogen phase. We also observed activation and differentiation of intrafollicular hair follicle stem cells, matrix cells, and extrafollicular DPCs in vivo and in vitro. We tested whether activation of growth factor pathways is a major effect of NSC treatment on hair growth by applying the growth factors to mouse skin. Combined growth factors, including TGF-β, significantly increased the hair shaft length and growth rate. DNA damage and cell death were not observed in skin cells of mice treated with the NSC extract for a prolonged period. Overall, our data demonstrate that NSC extract provides an effective approach for promoting hair growth by directly regulating hair follicle niches through TGF-β and BMP signaling pathways as well as induction of core growth factors.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.3727/096368916X691466 | DOI Listing |
Arch Dermatol Res
January 2025
Institute of Pharmaceutical Research and Development, College of Pharmacy, Wonkwang University, Iksan, Jeonbuk, 54538, South Korea.
Hair follicle growth depends on the intricate interaction of cells within the follicle and its vascular supply. Current FDA-approved treatments like minoxidil have limitations, including side effects and the need for continuous use. Moracin M, a compound from Moraceae family, was investigated for its effects on hair growth and vascular regeneration.
View Article and Find Full Text PDFVirchows Arch
January 2025
CARADERM Network, Tours, France.
Trichogerminoma (TG) is a rare adnexal tumor with hair follicle differentiation with less than 50 cases reported in the literature. In 2022, by investigating the genetic profile of 21 cases, our group identified recurrent rearrangements of the GRHL1/2/3 genes in this tumor entity, suggesting such alteration as the main oncogenic driver in TG. Up to now, only one TG case of malignant transformation has been reported.
View Article and Find Full Text PDFVet Sci
January 2025
Department of Veterinary Medicine, University of Perugia, Via San Costanzo 4, 06126 Perugia, Italy.
Ghrelin (GhRL) is an orexigenic hormone influenced by nutritional state. It plays a role in skin repair and diseases, though little information exists regarding its function in this organ. GhRL and its receptor were investigated in the skin of sheep under different feeding conditions to explore GhRL system presence and possible modifications due to diet.
View Article and Find Full Text PDFExpert Opin Drug Deliv
January 2025
Laboratory of Food, Drugs, and Cosmetics (LTMAC), University of Brasilia (UnB), Brasília, DF, Brazil.
Introduction: Androgenic alopecia is a multifactorial disease with a high incidence and a great psychological burden on patients. The current FDA-approved treatment is topical minoxidil or oral finasteride. However, both present significant limitations.
View Article and Find Full Text PDFAdv Exp Med Biol
January 2025
Department of Physiology, Faculty of Medicine, Muğla Sıtkı Koçman University, Muğla, Turkey.
Skin regeneration, repair, and the promotion of hair growth are intricate and dynamic processes essential for preserving the overall health, functionality, and appearance of both skin and hair. These processes involve a coordinated interplay of cellular activities and molecular signaling pathways that ensure the maintenance and restoration of skin integrity and hair vitality. Recent advancements in regenerative medicine have underscored the significant role of mesenchymal stem cell (MSC)-derived exosomes as key mediators in these processes.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!