Background: Recent studies have challenged the dogma that the adult heart is a postmitotic organ and raise the possibility of the existence of resident cardiac stem cells (CSCs). Our study aimed to explore if these CSCs are present in the "ventricular tip" obtained during left ventricular assist device (LVAD) implantation from patients with end-stage heart failure (HF) and the relationship with LV dysfunctional area extent.

Methods: Four consecutive patients with ischemic cardiomyopathy and end-stage HF submitted to LVAD implantation were studied. The explanted "ventricular tip" was used as a sample of apical myocardial tissue for the pathological examination. Patients underwent clinical and echocardiographic examination, both standard transthoracic echocardiography (TTE) and speckle tracking echocardiography (STE), before LVAD implantation.

Results: All patients presented severe apical dysfunction, with apical akinesis/diskinesis and very low levels of apical longitudinal strain (-3.5 ± 2.9%). Despite this, the presence of CSCs was demonstrated in pathological myocardial samples of "ventricular tip" in all 4 of the patients. It was found to be a mean of 6 c-kit cells in 10 fields magnification 40×.

Conclusions: Cardiac stem cells can be identified in the LV apical segment of patients who have undergone LVAD implantation despite LV apical fibrosis.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.transproceed.2015.12.045DOI Listing

Publication Analysis

Top Keywords

cardiac stem
12
stem cells
12
left ventricular
12
"ventricular tip"
12
lvad implantation
12
ventricular assist
8
assist device
8
apical
7
patients
7
evidence cardiac
4

Similar Publications

Platelet membrane-modified exosomes targeting plaques to activate autophagy in vascular smooth muscle cells for atherosclerotic therapy.

Drug Deliv Transl Res

January 2025

Center for Coronary Heart Disease, Department of Cardiology, National Center for Cardiovascular Diseases of China, State Key Laboratory of Cardiovascular Disease, Fu Wai Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, 167 Beilishi Rd, Beijing, 100037, China.

Atherosclerosis is one of the leading causes of ischemic cardiovascular disease worldwide. Recent studies indicated that vascular smooth muscle cells (VSMCs) play an indispensable role in the progression of atherosclerosis. Exosomes derived from mesenchymal stem cells (MSCs) have demonstrated promising clinical applications in the treatment of atherosclerosis.

View Article and Find Full Text PDF

Swine are increasingly utilized in cardiovascular research due to their anatomical and physiological similarities to humans, particularly for studying diastolic dysfunction. While MRI offers excellent structural imaging, echocardiography provides superior real-time assessment of diastolic parameters. To address the lack of standardized methods and reduce variability across studies, we present a comprehensive guide for performing echocardiography in Yorkshire pigs, detailing anatomical considerations, equipment requirements, and technical approaches.

View Article and Find Full Text PDF

CCN5 suppresses injury-induced vascular restenosis by inhibiting smooth muscle cell proliferation and facilitating endothelial repair via thymosin β4 and Cd9 pathway.

Eur Heart J

January 2025

State Key Laboratory of Cardiovascular Diseases and Medical Innovation Center, Shanghai Heart Failure Research Center, Shanghai East Hospital, Tongji University School of Medicine, Shanghai 200120, China.

Background And Aims: Members of the CCN matricellular protein family are crucial in various biological processes. This study aimed to characterize vascular cell-specific effects of CCN5 on neointimal formation and its role in preventing in-stent restenosis (ISR) after percutaneous coronary intervention (PCI).

Methods: Stent-implanted porcine coronary artery RNA-seq and mouse injury-induced femoral artery neointima single-cell RNA sequencing were performed.

View Article and Find Full Text PDF

Background: The therapeutic armamentarium for heart failure with preserved ejection fraction (HFpEF) remains notably constrained. A factor contributing to this problem could be the scarcity of in vitro models for HFpEF, which hinders progress in developing new therapeutic strategies. Here, we aimed at developing a novel, comorbidity-inspired, human, in vitro model for HFpEF.

View Article and Find Full Text PDF

MSC-derived exosome ameliorates pulmonary fibrosis by modulating NOD 1/NLRP3-mediated epithelial-mesenchymal transition and inflammation.

Heliyon

January 2025

Department of Cardiovascular Medicine, The Second Affiliated Hospital of University of South China, Key Laboratory of Heart Failure Prevention & Treatment of Hengyang, Clinical Medicine Research Center of Arteriosclerotic Disease of Hunan Province, Hengyang, Hunan, China.

Background: Pulmonary fibrosis (PF) is an irreversible and usually fatal lung disease. In recent years, the therapeutic role of exosomes derived from mesenchymal stem cells (MSC-exos) in anti-fibrotic treatment has received much attention. In this study, we aimed to determine the anti-fibrotic properties and related molecular mechanisms of MSC-exos in Bleomycin(BLM)-induced PF.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!