Renal fibroblast proliferation is key in renal fibrosis and chronic kidney disease. Transforming growth factor-β1 (TGF-β1) has been demonstrated to be an important factor that induces cell proliferation in renal fibroblasts. Epidermal growth factor receptor (EGFR) is also recognized as a factor promoting renal fibroblast proliferation. In addition, mitogen‑activated protein kinase signaling pathways are associated with TGF‑β1‑ and EGFR‑induced cell proliferation. Gefitinib, an EGFR tyrosine kinase inhibitor, is predominantly used as an anti‑tumor therapeutic agent in clinical therapeutic strategies. However, gefitinib has been suggested to exert anti‑proliferative effects on renal fibroblasts, however, high‑dose gefitinib may result in serious side effects. The present study aims to determine whether low‑dose gefitinib reduces gefitinib‑induced side effects and maintains the anti‑proliferative effects on renal fibroblasts. TGF‑β1 promotes cell proliferation in renal fibroblasts, and the current study demonstrates that low‑dose gefitinib treatment exhibits anti‑proliferative effects similar to those of high‑dose gefitinib treatment. Thus, although high‑dose gefitinib is a conventional anti‑tumor drug, low‑dose gefitinib may be of use in renal fibrosis treatment. Furthermore, the present study demonstrates that a combined treatment with low-dose gefitinib and vitamin E has synergistic effects that reduce TGF‑β1‑induced fibroblast proliferation, cell-cycle arrest and the ERK phosphorylation pathway.

Download full-text PDF

Source
http://dx.doi.org/10.3892/mmr.2016.5155DOI Listing

Publication Analysis

Top Keywords

fibroblast proliferation
16
renal fibroblasts
16
renal fibroblast
12
proliferation renal
12
cell proliferation
12
anti‑proliferative effects
12
high‑dose gefitinib
12
low‑dose gefitinib
12
gefitinib
10
renal
9

Similar Publications

Aim: The tumor microenvironment in pancreatic cancer, characterized by abundant desmoplastic stroma, has been implicated in the failure of chemotherapy. Therefore, developing therapeutic strategies targeting tumor and stromal cells is essential. Triptolide, a natural compound derived from the plant Tripterygium wilfordii, has shown antitumor activity in various cancers, including pancreatic cancer.

View Article and Find Full Text PDF

Psoriasis is an inflammatory dermatosis that features overproliferation and inflammatory reaction of keratinocytes. A study reported that IL-22 is involved in the pathogenesis of psoriasis by mediating miR-124 to regulate the expression of fibroblast growth factor receptor 2 in keratinocytes. A microRNA may target multiple target genes.

View Article and Find Full Text PDF

Genetic Characteristics of the Rat Fibroblast Cell Line Rat-1.

Cells

December 2024

Institute of Molecular Pathobiochemistry, Experimental Gene Therapy and Clinical Chemistry (IFMPEGKC), RWTH, University Hospital Aachen, D-52074 Aachen, Germany.

The Rat-1 cell line was established as a subclone of the parental rat fibroblastoid line F2408, derived from Fisher 344 rat embryos. Rat-1 cells are widely used in various research fields, especially in cancer biology, to study the effects of oncogenes on cell proliferation. They are also crucial for investigating signal transduction pathways and play a key role in drug testing and pharmacological studies due to their rapid proliferation.

View Article and Find Full Text PDF

Chronic hard-to-heal wounds pose a significant threat to patients' health and quality of life, and their clinical management remains a challenge. Adipose-derived stem cell exosomes (ADSC-exos) have shown promising results in promoting diabetic wound healing. However, effectively enhancing the retention of exosomes in wounds for treatment remains a key issue that needs to be addressed.

View Article and Find Full Text PDF

Effective therapeutic strategies for epithelioid sarcoma (EpS), a high-grade soft tissue sarcoma characterized by loss of integrase interactor 1 (INI1), have not yet been developed. The present study therefore investigated the association between INI1 loss and upregulation of the aurora kinase A (AURKA)/polo-like kinase 1 (PLK1)/cell division cycle 25C (CDC25C) axis, as well as the therapeutic relevance of this axis in EpS. Notably, our findings showed that the reintroduction of INI1 in VA-ES-BJ cells significantly reduced proliferation, mitigated tumorigenicity, and negatively regulated the expression of AURKA and its downstream effectors, as well as the activation of PLK1 and CDC25C.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!