Introducing Telescoping Process to Synthesis of a Key Intermediate of Drug Discoveries Using Design of Experiment.

Chem Pharm Bull (Tokyo)

Bio Process Research and Development Laboratories, Kyowa Hakko Kirin Co., Ltd.

Published: July 2016

The 5-bromo-2-methylamino-8-methoxyquinazoline (1) is a key intermediate in our drug discoveries. Compound 1 bears a monomethylamino group at the 2-position of the quinazoline ring. This compound has been synthesized from 6-bromo-2-fluoro-3-methoxybenzaldehyde by a synthetic route including a total of four isolation processes in the medicinal chemistry laboratories. Our process chemistry laboratories successfully improved the original synthetic route by introducing the telescoping process. We successfully reduced the isolation processes from four to two processes by using information extracted through design of experiment. The total yield of compound 1 increased by 18%, while maintaining the purity of compound 1 of the original synthetic route. Accordingly, we contributed to the quick supply of compound 1 to the medicinal laboratories.

Download full-text PDF

Source
http://dx.doi.org/10.1248/cpb.c16-00187DOI Listing

Publication Analysis

Top Keywords

synthetic route
12
introducing telescoping
8
telescoping process
8
key intermediate
8
intermediate drug
8
drug discoveries
8
design experiment
8
isolation processes
8
chemistry laboratories
8
original synthetic
8

Similar Publications

Mammalian SLC39A13 promotes ER/Golgi iron transport and iron homeostasis in multiple compartments.

Nat Commun

December 2024

Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China.

Iron is a potent biochemical, and accurate homeostatic control is orchestrated by a network of interacting players at multiple levels. Although our understanding of organismal iron homeostasis has advanced, intracellular iron homeostasis is poorly understood, including coordination between organelles and iron export into the ER/Golgi. Here, we show that SLC39A13 (ZIP13), previously identified as a zinc transporter, promotes intracellular iron transport and reduces intracellular iron levels.

View Article and Find Full Text PDF

A Straightforward Synthetic Route to Monocyclic 1,3,2,4-Diazadiborinines.

Inorg Chem

December 2024

School of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, P. R. China.

A novel straightforward synthetic route to monocyclic 1,3,2,4-diazadiborinines has been developed by the sequential reaction of the NHC-coordinated iminoborane with bases and haloboranes (or borate). The first examples of monocyclic 1,3,2,4-diazadiborinines featuring different functional groups on the two B atoms have been synthesized and structurally characterized. Further derivatization of 4-bromophenyl-substituted 1,3,2,4-diazadiborinine has also been achieved, giving the biphenyl-substituted 1,3,2,4-diazadiborinine.

View Article and Find Full Text PDF

Genetically encoded biosensors for the circular plastics bioeconomy.

Metab Eng Commun

December 2024

Manchester Institute of Biotechnology (MIB), Department of Chemistry, University of Manchester, Manchester, M1 7DN, UK.

Current plastic production and consumption routes are unsustainable due to impact upon climate change and pollution, and therefore reform across the entire value chain is required. Biotechnology offers solutions for production from renewable feedstocks, and to aid end of life recycling/upcycling of plastics. Biology sequence/design space is complex requiring high-throughput analytical methods to facilitate the iterative optimisation, design-build, test-learn (DBTL), cycle of Synthetic Biology.

View Article and Find Full Text PDF

The origin of life on Earth remains one of the most perplexing challenges in biochemistry. While numerous bottom-up experiments under prebiotic conditions have provided valuable insights into the spontaneous chemical genesis of life, there remains a significant gap in the theoretical understanding of the complex reaction processes involved. In this study, we propose a novel approach using a roto-translationally invariant potential (RTIP) formulated with pristine Cartesian coordinates to facilitate the simulation of chemical reactions.

View Article and Find Full Text PDF

Multi-heterointerface charge transfer in amine-functionalized cadmium sulfide-copper sulfide@titanium dioxide hollow spheres with rich oxygen vacancies for carbon dioxide photoreduction.

J Colloid Interface Sci

December 2024

Key Laboratory of Functional Inorganic Material Chemistry, Ministry of Education of the People's Republic of China, Heilongjiang University, Harbin 150080, PR China. Electronic address:

Photocatalytically reducing CO into high-value-added chemical materials has surfaced as a viable strategy for harnessing solar energy and mitigating the greenhouse effect. But the inadequate separation of the photogenerated electron-hole pair remains a major obstacle to CO photoreduction. Constructing heterostructure photocatalysts with efficient interface charge transfer is a promising approach to solving the above problems.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!