Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Fusarium graminearum is the major causal agent of Fusarium head blight (FHB) of wheat and barley and is considered to be one of the most devastating plant diseases worldwide. Chitin is a critical component of the fungal cell wall and is polymerized from UDP-N-acetyl-alpha-D-glucosamine by chitin synthase. We characterized FgCHS8, a new class of the chitin synthase gene in F. graminearum. Disruption of FgCHS8 resulted in reduced accumulation of chitin, decreased chitin synthase activity, and had no effect on conidia growth when compared with the wild-type isolate. ΔFgCHS8 had a growth rate comparable to that of the wild-type isolate in vitro. However, ΔFgCHS8 had reduced growth when grown on agar supplemented with either 0.025% SDS or 0.9 mM salicylic acid. ΔFgCHS8 produced significantly less deoxynivalenol and exhibited reduced pathogenicity in wheat spikes. Re-introduction of a functional FgCHS8 gene into the ΔFgCHS8 mutant strain restored the wild-type phenotypes. Fluorescence microscopy revealed that FgCHS8 protein was initially expressed in the septa zone, and then gradually distributed over the entire cellular membrane, indicating that FgCHS8 was required for cell wall development. Our results demonstrated that FgCHS8 is important for cell wall sensitivity to environmental stress factors and deoxynivalenol production in F. graminearum.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.funbio.2016.02.002 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!