Whether species can respond evolutionarily to current climate change is crucial for the persistence of many species. Yet, very few studies have examined genetic responses to climate change in manipulated experiments carried out in natural field conditions. We examined the evolutionary response to climate change in a common annelid worm using a controlled replicated experiment where climatic conditions were manipulated in a natural setting. Analyzing the transcribed genome of 15 local populations, we found that about 12% of the genetic polymorphisms exhibit differences in allele frequencies associated to changes in soil temperature and soil moisture. This shows an evolutionary response to realistic climate change happening over short-time scale, and calls for incorporating evolution into models predicting future response of species to climate change. It also shows that designed climate change experiments coupled with genome sequencing offer great potential to test for the occurrence (or lack) of an evolutionary response.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5021122PMC
http://dx.doi.org/10.1111/gcb.13293DOI Listing

Publication Analysis

Top Keywords

climate change
28
evolutionary response
16
change
7
climate
6
response
5
replicated climate
4
change field
4
field experiment
4
experiment reveals
4
reveals rapid
4

Similar Publications

The effects of climate change on mental health and psychological well-being: Impacts and priority actions.

Glob Ment Health (Camb)

December 2024

Department of Anthropology, School of Sociology and Political Science of Anhui University, No: 111 Jiulong Road, Jingkai District, Hefei City, Anhui Province 230601, P.R. China.

Climate anxiety has a negative impact on the mental health and psychological well-being of the vulnerable population. The goal is to assess many factors that affect mental health and psychological well-being, as well as how climate change affects mental health in Pakistan's vulnerable population. This study provides evidence-based insights into the long- and medium-term impacts of extreme weather events on mental health.

View Article and Find Full Text PDF

Introduction: In winter 2021/2022, a wolf population in the primeval Białowieża Forest in Poland was struck by an outbreak of severe mange caused by mixed infestations of and mites. We present an epidemiological analysis of this mange which caused significant morbidity and mortality.

Material And Methods: Ten sites known for wolf activity were monitored by camera trapping.

View Article and Find Full Text PDF

Epigenetic mechanisms, including DNA methylation, histone modifications, and Noncoding RNAs, play a critical role in enabling plants to adapt to environmental changes without altering their DNA sequence. These processes dynamically regulate gene expression in response to diverse stressors, making them essential for plant resilience under changing global conditions. This review synthesises research on tropical and subtropical plants-species naturally exposed to extreme temperatures, salinity, drought, and other stressors-while drawing parallels with similar mechanisms observed in arid and temperate ecosystems.

View Article and Find Full Text PDF

Biogeographical Distribution of River Microbial Communities in Atlantic Catchments.

Environ Microbiol Rep

February 2025

IHCantabria-Instituto de Hidráulica Ambiental de la Universidad de Cantabria, Universidad de Cantabria, Santander, Spain.

Microbes inhabit virtually all river ecosystems, influencing energy flow and playing a key role in global sustainability and climate change. Yet, there is uncertainty about how various taxonomic groups respond to large-scale factors in river networks. We analysed microbial community richness and composition across six European Atlantic catchments using environmental DNA sequencing.

View Article and Find Full Text PDF

Increased Mineral-Associated Organic Carbon and Persistent Molecules in Allochthonous Blue Carbon Ecosystems.

Glob Chang Biol

January 2025

CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research (YIC), Chinese Academy of Sciences (CAS), Shandong Key Laboratory of Coastal Environmental Processes, YICCAS, Yantai, China.

Coastal wetlands contain very large carbon (C) stocks-termed as blue C-and their management has emerged as a promising nature-based solution for climate adaptation and mitigation. The interactions among sources, pools, and molecular compositions of soil organic C (SOC) within blue C ecosystems (BCEs) remain elusive. Here, we explore these interactions along an 18,000 km long coastal line of salt marshes, mangroves, and seagrasses in China.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!