A novel strategy for the absolute quantification of selenium (Se) included in selenoprotein P (SEPP1), an important biomarker for human nutrition and disease, including diabetes and cancer, is presented here for the first time. It is based on the use of species-specific double isotope dilution mass spectrometry (SSIDA) in combination with HPLC-ICP-MS/MS for the determination of protein bound Se down to the peptide level in a complex plasma matrix with a total content of Se of 105.5 μg kg(-1). The method enabled the selective Se speciation analysis of human plasma samples without the need of extensive cleanup or preconcentration steps as required for traditional protein mass spectrometric approaches. To assess the method accuracy, two plasma reference materials, namely, BCR-637 and SRM1950, for which literature data and a reference value for SEPP1 have been reported, were analyzed using complementary hyphenated methods and the species-specific approach developed in this work. The Se mass fractions obtained via the isotopic ratios (78)Se/(76)Se and (82)Se/(76)Se for each of the Se-peptides, namely, ENLPSLCSUQGLR (ENL) and AEENITESCQUR (AEE) (where U is SeCys), were found to agree within 2.4%. A relative expanded combined uncertainty (k = 2) of 5.4% was achieved for a Se (as SEPP1) mass fraction of approximately 60 μg kg(-1). This work represents a systematic approach to the accurate quantitation of plasma SEPP1 at clinical levels using SSIDA quantification. Such methodology will be invaluable for the certification of reference materials and the provision of reference values to clinical measurements and clinical trials.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acs.analchem.6b00715DOI Listing

Publication Analysis

Top Keywords

selenoprotein sepp1
8
isotope dilution
8
μg kg-1
8
reference materials
8
sepp1
5
plasma
5
accurate quantification
4
quantification selenoprotein
4
sepp1 plasma
4
plasma isotopically
4

Similar Publications

Selenoprotein P1 as a biomarker of insulin resistance in pediatric obesity: Insights and implications.

World J Clin Pediatr

March 2025

Department of Biochemistry, School of Medicine, College of Medicine, China Medical University, Taichung 404328, Taiwan.

This editorial discusses the findings of Elbarky on the role of selenoprotein P1 (SEPP1) in pediatric obesity and insulin resistance. Their study uncovered significantly lower SEPP1 Levels in children who were obese compared with healthy peers, demonstrating a negative correlation between SEPP1 levels and measures of adiposity and insulin resistance. These findings suggest that SEPP1 is a biomarker useful in the early identification of insulin resistance in pediatric populations.

View Article and Find Full Text PDF

Selenium promotes neural development through the regulation of GPX4 and SEPP1 in an iPSC-derived neuronal model.

Biomaterials

May 2025

State Key Laboratory of Bioactive Molecules and Druggability Assessment, Guangdong Basic Research Center of Excellence for Natural Bioactive Molecules and Discovery of Innovative Drugs, Key Laboratory of CNS Regeneration (Ministry of Education), Guangdong Key Laboratory of Non-Human Primate Research, GHM Institute of CNS Regeneration, Department of Chemistry, Jinan University, Guangzhou, 510632, China; Department of Psychiatry, The First Affiliated Hospital, Jinan University, Guangzhou, 510632, China; Co-Innovation Center of Neuroregeneration, Nantong University, Nantong, 226019, China; Department of Neurology, Hainan General Hospital (Hainan Affiliated Hospital of Hainan Medical University), Haikou, 570100, China. Electronic address:

Selenium (Se) is incorporated into selenoproteins in the form of selenocysteine, which has biological functions associated with neural development. Unfortunately, the specific roles and mechanisms of selenoproteins at different stages of neuronal development are still unclear. Therefore, in this study, we successfully established a neuronal model derived from induced pluripotent stem cells (iPSC-iNeuron) and used Se nanoparticles (SeNPs@LNT) with high bioavailability to intervene at different stages of neural development in iPSC-iNeuron model.

View Article and Find Full Text PDF

Selenoprotein P is a target for regulating extracellular vesicle biogenesis and secretion from activated microglia in vivo.

Cell Rep

December 2024

Department of Neuroscience, Mayo Clinic Florida, Jacksonville, FL 32224, USA; Regenerative Science Graduate Program, Mayo Clinic College of Medicine, Jacksonville, FL 32224, USA; Robert and Alene Kogod Center on Aging, Mayo Clinic, Jacksonville, FL 32224, USA; Alzheimer's Disease Research Center, Mayo Clinic, Jacksonville, FL 32224, USA. Electronic address:

Microglia, brain innate immune cells, participate in the spread of inflammatory signals and aggregated proteins through secretion of extracellular vesicles (EVs). Selenoprotein P (Sepp1) is a potential regulator of microglial EV secretion. Here, we investigate the effect of Sepp1 silencing on microglial transcriptomics to elucidate the Sepp1 regulatory mechanism of EV secretion and validate this effect in APP knockin mice.

View Article and Find Full Text PDF

Background: Cancer cells induce neutrophil extracellular traps (NETs) to promote tumor progression and metastasis. However, only a few studies have focused on the role of NETs in Neuroblastoma (NB).

Methods: First, based on the expression of NET-related genes, consensus clustering analysis was conducted to cluster NB samples into different subtypes.

View Article and Find Full Text PDF

Inhibition of selenium supply function of selenoprotein p through adduct formation by sulforaphane.

J Nutr Biochem

January 2025

Laboratory of Molecular Biology and Metabolism, Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai, Miyagi, Japan. Electronic address:

Selenium is a potent nucleophile essential for selenoenzymes, such as glutathione peroxidase (also known as GSH-Px; GPX; GPx) and selenoprotein P (also known as SelP; SEPP1; SELENOP; SeP). SeP is predominantly secreted from the liver and functions as a selenium carrier in plasma. We previously found that sulforaphane (SFN), an electrophilic phytochemical, reduces SeP production in cultured hepatocytes and mouse liver, however, the effect of electrophilic modification of SeP by SFN on selenium transport and metabolism remains unclear.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!