Spiruchostatin B (SP-B), is a potent histone deacetylase (HDAC) inhibitor, in addition to HDAC inhibition, the pharmacological effects of SP-B are also attributed to its ability to produce intracellular reactive oxygen species (ROS), particularly H2O2. In this study, we investigated the effects of low dose (non-toxic) SP-B on radiation-induced apoptosis in human lymphoma U937 cells in vitro. The treatment of cells with low-dose SP-B induced the acetylation of histones, however, does not induce apoptosis. Whereas, the combined treatment with SP-B and radiation significantly enhanced the radiation-induced apoptosis, suggesting the potential role of this combined treatment for future radiation therapy. Interestingly, the enhancement of apoptosis was accompanied by significant increased in the ROS generation. Pre-treatment with an antioxidant, N-acetyl-l-cysteine (NAC) significantly inhibited the enhancement of apoptosis induced by combined treatment, indicating that ROS play an essential role. It was also found that SP-B combined with radiation caused the activation of death receptor and intrinsic apoptotic pathways, via modulation of ROS-mediated signaling. Moreover, SP-B also significantly enhanced the radiation-induced apoptosis in other lymphoma cell lines such as Molt-4 and HL-60. Taken together, our findings suggest that the low-dose SP-B enhances radiation-induced apoptosis via modulation of redox signaling because of its ability to serve as an intracellular ROS generating agent, mainly (H2O2 or [Formula: see text]). This study provides further insights into the mechanism of action of SP-B with radiation and demonstrates that SP-B can be used as a future novel sensitizer for radiation therapy.

Download full-text PDF

Source
http://dx.doi.org/10.3109/10715762.2015.1115029DOI Listing

Publication Analysis

Top Keywords

radiation-induced apoptosis
20
combined treatment
12
sp-b
10
potent histone
8
histone deacetylase
8
enhances radiation-induced
8
apoptosis
8
apoptosis human
8
human lymphoma
8
lymphoma u937
8

Similar Publications

Gliclazide (GLZ), an oral antihyperglycemic medication, has additional beneficial effects, such as anti-inflammatory and antioxidant properties, besides lowering blood glucose levels. In this study, the radio-protective effect of GLZ was evaluated against ionizing radiation (IR)-induced intestinal injury in mice. Eight groups of mice were randomized as follows: control, GLZ (5, 10, and 25 mg/kg), IR (6 Gy), and IR + GLZ (at 5, 10, and 25 mg/kg).

View Article and Find Full Text PDF

Radiotherapy stands as a cornerstone in cancer therapy, with nuclear DNA acknowledged as the principal target molecule for radiation-induced cellular demise or injury. Nonetheless, an expanding body of contemporary research elucidates the significant contri-bution of sphingolipids to radiation-induced cell death, particularly in modulating radiation-induced apoptosis. Radiation can instigate apoptosis through multiple pathways of sphin-golipid metabolism, encompassing the activation of ceramide synthase, acid sphingomyelin-ase, neutral sphingomyelinase, sphingosine-1-phosphate lyase, and sphingosine-1-phosphate phosphatase, and the inhibition of sphingosine kinase-1.

View Article and Find Full Text PDF

Radiation therapy uses ionizing radiation (IR) to kill cancer cells. However, during radiotherapy normal cells are also damaged and killed by the generation of reactive oxygen species. Polyphenolic compounds are known to mitigate the damaging effects of radiation.

View Article and Find Full Text PDF

Purpose: A comprehensive literature review was undertaken to understand the effects and underlying mechanisms of cranial radiotherapy (RT) on the hippocampus and hippocampal neurogenesis as well as to explore protective factors and treatments that might mitigate these effects in preclinical studies.

Methods: PubMed/MEDLINE, Web of Science, and Embase were queried for studies involving the effects of radiation on the hippocampus and hippocampal neurogenesis. Data extraction followed the Animal Research Reporting of In Vivo Experiments (ARRIVE) guidelines, and a risk of bias assessment was conducted for the included animal studies using the Systematic Review Centre for Laboratory Animal Experimentation (SYRCLE) risk of bias tool.

View Article and Find Full Text PDF

Objective: To investigate the reparative effect of hypoxia pretreated hAMSCs on radiation-induced damage to salivary gland function in mice.

Methods: hAMSCs were separated from human amniotic tissues by mechanical and enzymatic digestion methods and a 15 Gy electron beam was used to locally irradiate the neck of mouse to create a salivary gland injury model. The mouse models were randomly divided into four groups: control group, IR+PBS group, IR+Nor group and IR+HP group.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!