MicroRNAs (miRNAs) are involved in cancer development and progression. Renal cell carcinoma (RCC) frequently undergoes metastasis and has a high mortality rate. The current study measured miRNA‑126 (miR‑126) expression levels in 128 pairs of clear cell RCC and adjacent normal kidney tissue samples by reverse transcription‑quantitative polymerase chain reaction, and analyzed the association between miR‑126 and various clinicopathological parameters. In addition, cell proliferation, wound healing and cell invasion assays were conducted using RCC cells overexpressing miR‑126. Potential miR‑126 target genes and the signaling pathways that may be regulated by miR‑126 were then examined. miR‑126 expression was significantly reduced in patients with metastatic RCC compared with patients without metastasis. Consistently, overexpression of miR‑126 in RCC cells significantly inhibited cell proliferation, migration and invasion in vitro compared with negative control miRNA. A luciferase reporter assay demonstrated that miR‑126 targets Rho associated coiled‑coil containing protein kinase 1 (ROCK1) by directly binding the 3'‑untranslated region. Furthermore, western blotting identified miR‑126 as an important regulator of the AKT and extracellular signal‑regulated 1/2 signaling pathways. The results of the present study indicate that miR‑126 inhibits RCC cell proliferation, migration and invasion by downregulating ROCK1. These findings suggest that miR‑126 may be valuable as a potential target for therapeutic intervention in RCC.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4878577 | PMC |
http://dx.doi.org/10.3892/mmr.2016.5160 | DOI Listing |
Mol Biol Rep
January 2025
Pediatric Cell, and Gene Therapy Research Center Gene, Cell and Tissue Research Institute, Tehran University of Medical Sciences, Tehran, Iran.
Bone serves as a fundamental structural component in the body, playing pivotal roles in support, protection, mineral supply, and hormonal regulation. However, critical-sized bone injuries have become increasingly prevalent, necessitating extensive medical interventions due to limitations in the body's capacity for self-repair. Traditional approaches, such as autografts, allografts, and xenografts, have yielded unsatisfactory results.
View Article and Find Full Text PDFCell Biochem Biophys
January 2025
Department of Obstetrics and Gynecology, Lishui Municipal Central Hospital, Lishui, Zhejiang, 323000, China.
Background: Endometriosis (EMS) is a difficult gynecological disease to cure. Frizzled-7 (FZD7) has been shown to be associated with the development of EMS, but its specific mechanism remains unclarified. This study aims to explore the role of FZD7 in EMS.
View Article and Find Full Text PDFNaunyn Schmiedebergs Arch Pharmacol
January 2025
Department of Urology, Affiliated Xi'an Peoples Hospital (Xi'an Fourth Hospital) of Northwest University, Xi'an, 710000, China.
Limited treatment options are available for bladder cancer (BCa) resulting in extremely high mortality rates. Cyclovirobuxine D (CVB-D), a naturally alkaloid, reportedly exhibits notable antitumor activity against diverse tumor types. However, its impact on CVB-D on BCa and its precise molecular targets remain unexplored.
View Article and Find Full Text PDFGlycoconj J
January 2025
Department of Orthopaedics, Nanchang People's Hospital (The Third Hospital of Nanchang), Nanchang City, Jiangxi Province, China.
Reduction of glucose transporter 1 (GLUT1), even deletion, may results in cartilage fibrosis and osteoarthritis. This study aims to investigate the SUMOylation of GLUT1 in osteoarthritis through small ubiquitin-like modifier 1(SUMO1), and explore the role of SUMOylated GLUT1 in glycometabolism, proliferation and apoptosis in chondrocytes. Human chondrocytes were incubated with 10 ng/mL of IL-1β to mimic osteoarthritis in vitro.
View Article and Find Full Text PDFClin Exp Med
January 2025
Department of Hematology-Oncology, Imam Hossein Educational Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
IL-27 is structurally an immune-enhancing and pleiotropic two-chain cytokine associated with IL-12 and IL-6 families. IL-27 contains two subunits, namely IL-27p28 and EBI3. A heterodimer receptor of IL-27, composed of IL27Rα (WSX1) and IL6ST (gp130) chains, mediates the IL-27 function following the activation of STAT1 and STAT3 signaling pathways.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!