Embryonic cardiomyocytes can orchestrate various cell protective mechanisms to survive mitochondrial stress.

J Mol Cell Cardiol

Max-Delbrück-Center for Molecular Medicine, Berlin, Germany; Department of Pediatric Cardiology, University Hospital Münster, Münster, Germany. Electronic address:

Published: August 2016

Whereas adult cardiomyocytes are highly susceptible to stress, cardiomyocytes in the prenatal heart appear to be rather resistant. To investigate how embryonic cardiomyocytes respond to metabolic stress in vivo, we utilized tissue mosaicism for mitochondrial dysfunction in 13.5dpc mouse hearts. The latter is based on inactivation of the X-linked gene encoding Holocytochrome c synthase (Hccs), which is essential for mitochondrial respiration. In heterozygous heart conditional Hccs knockout females (cHccs(+/-)) random X chromosomal inactivation results in a mosaic of healthy and HCCS deficient cells in the myocardium. Microarray RNA expression analyses identified genes involved in unfolded protein response (UPR) and programmed cell death as differentially expressed in cHccs(+/-) versus control embryonic hearts. Activation of the UPR is localized to HCCS deficient cardiomyocytes but does not involve ER stress pathways, suggesting that it is caused by defective mitochondria. Consistently, mitochondrial chaperones, such as HSP10 and HSP60, but not ER chaperones are induced in defective cells. Mitochondrial dysfunction can result in oxidative stress, but no evidence for excessive ROS (reactive oxygen species) production was observed in cHccs(+/-) hearts. Instead, the antioxidative proteins SOD2 and PRDX3 are induced, suggesting that ROS detoxification prevents oxidative damage in HCCS deficient cardiomyocytes. Mitochondrial dysfunction and unrestricted UPR can induce cell death, and we detected the initiation of upstream events of both intrinsic as well as extrinsic apoptosis in cHccs(+/-) hearts. Cell death is not executed, however, suggesting the activation of antiapoptotic mechanisms. Whereas most apoptosis inhibitors are either unchanged or downregulated in HCCS deficient cardiomyocytes, Bcl-2 and ARC (apoptosis repressor with caspase recruitment domain) are induced. Given that ARC can inhibit both apoptotic pathways as well as necrosis and attenuates UPR, we generated cHccs(+/-) embryos on an Arc knockout background (cHccs(+/-),Arc(-/-)). Surprisingly, the absence of ARC does not induce cell death in embryonic or postnatal HCCS deficient cardiomyocytes and adult cHccs(+/-),Arc(-/-) mice exhibit normal cardiac morphology and function. Taken together, our data demonstrate an impressive plasticity of embryonic cardiomyocytes to respond to metabolic stress, the loss of which might be involved in the high susceptibility of postnatal cardiomyocytes to cell death.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.yjmcc.2016.04.007DOI Listing

Publication Analysis

Top Keywords

hccs deficient
20
cell death
20
deficient cardiomyocytes
16
embryonic cardiomyocytes
12
mitochondrial dysfunction
12
cardiomyocytes
9
cardiomyocytes respond
8
respond metabolic
8
metabolic stress
8
chccs+/- hearts
8

Similar Publications

FAM136A deficiency has been associated with Ménière's disease. However, the underlying mechanism of action of this protein remains unclear. We hypothesized that FAM136A functions in maintaining mitochondria, even in HepG2 cells.

View Article and Find Full Text PDF

Background & Aims: Responses to immunotherapies in hepatocellular carcinoma (HCC) are suboptimal with no biomarkers to guide patient selection. "Humanized" mice represent promising models to address this deficiency but are limited by variable chimerism and underdeveloped myeloid compartments. We hypothesized that expression of human GM-CSF and IL-3 increases tumor immune cell infiltration, especially myeloid-derived cells, in humanized HCC patient-derived xenografts (PDXs).

View Article and Find Full Text PDF

Mitotic arrest-deficient 2 like 1 (MAD2L1) is a component of the mitotic spindle assembly checkpoint implicated in cancer cell proliferation and tumorigenesis. The functional role of MAD2L1 in hepatocellular carcinoma (HCC) has not been adequately investigated, especially in vivo. In the current manuscript, we sought to address the function of MAD2L1 in hepatocarcinogenesis.

View Article and Find Full Text PDF

: Hereditary colorectal cancer syndromes (HCCS), including familial adenomatous polyposis (FAP) and Lynch syndrome (LS), are the two most important high-risk conditions for colorectal cancer (CRC). Inflammatory bowel disease (IBD) increases the risk by two to six times compared with that in the general population. The intersection of these two conditions has rarely been documented in literature.

View Article and Find Full Text PDF

In advanced hepatocellular carcinoma (HCC), RNA helicase DDX5 regulates the Wnt/β-catenin-ferroptosis axis, influencing the efficacy of the multi-tyrosine kinase inhibitor (mTKI) sorafenib. DDX5 inhibits Wnt/β-catenin signaling, preventing sorafenib-induced ferroptosis escape. Sorafenib/mTKIs reduce DDX5 expression, correlating with poor patient survival post-sorafenib treatment.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!