mTORC2 mediates CXCL12-induced angiogenesis.

Angiogenesis

The Department of Molecular Biology and Biochemistry, University of California Irvine, 3219 McGaugh Hall, Mail Code: 3900, Irvine, CA, 92697, USA.

Published: July 2016

AI Article Synopsis

  • CXCL12 promotes angiogenesis by activating the mTORC2 signaling pathway in endothelial cells, as opposed to mTORC1.
  • Disruption experiments indicate that mTORC2 is essential for microvascular sprouting, while mTORC1 is not involved.
  • Inhibition of mTORC2 in a mouse model leads to a significant reduction in both tumor angiogenesis and tumor size, linking it to metabolic regulation through the enzyme PFKFB3.

Article Abstract

The chemokine CXCL12, through its receptor CXCR4, positively regulates angiogenesis by promoting endothelial cell (EC) migration and tube formation. However, the relevant downstream signaling pathways in EC have not been defined. Similarly, the upstream activators of mTORC2 signaling in EC are also poorly defined. Here, we demonstrate for the first time that CXCL12 regulation of angiogenesis requires mTORC2 but not mTORC1. We find that CXCR4 signaling activates mTORC2 as indicated by phosphorylation of serine 473 on Akt and does so through a G-protein- and PI3K-dependent pathway. Significantly, independent disruption of the mTOR complexes by drugs or multiple independent siRNAs reveals that mTORC2, but not mTORC1, is required for microvascular sprouting in a 3D in vitro angiogenesis model. Importantly, in a mouse model, both tumor angiogenesis and tumor volume are significantly reduced only when mTORC2 is inhibited. Finally, 6-phosphofructo-2-kinase/fructose-2,6-bisphosphatase 3 (PFKFB3), which is a key regulator of glycolytic flux, is required for microvascular sprouting in vitro, and its expression is reduced in vivo when mTORC2 is targeted. Taken together, these findings identify mTORC2 as a critical signaling nexus downstream of CXCL12/CXCR4 that represents a potential link between mTORC2, metabolic regulation, and angiogenesis.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4959910PMC
http://dx.doi.org/10.1007/s10456-016-9509-6DOI Listing

Publication Analysis

Top Keywords

mtorc2
9
regulation angiogenesis
8
mtorc2 mtorc1
8
required microvascular
8
microvascular sprouting
8
sprouting vitro
8
angiogenesis
6
mtorc2 mediates
4
mediates cxcl12-induced
4
cxcl12-induced angiogenesis
4

Similar Publications

A novel rapalog shows improved safety vs. efficacy in a human organoid model of polycystic kidney disease.

Stem Cell Reports

January 2025

Department of Medicine, Division of Nephrology, Institute for Stem Cell & Regenerative Medicine, and Kidney Research Institute, University of Washington School of Medicine, Seattle, WA 98109, USA; Plurexa LLC, Seattle, WA 98109, USA. Electronic address:

The mammalian target of rapamycin (mTOR) pathway is a therapeutic target in polycystic kidney disease (PKD), but mTOR inhibitors such as everolimus have failed to show efficacy at tolerated doses in clinical trials. Here, we introduce AV457, a novel rapalog developed to reduce side effects, and assess its dose-dependent safety and efficacy versus everolimus in PKD1 and PKD2 human kidney organoids, which form cysts in a PKD-specific way. Both AV457 and everolimus reduce cyst growth over time.

View Article and Find Full Text PDF

Mutations in TSC1 or TSC2 in axons induce tuberous sclerosis complex. Neurological manifestations mainly include epilepsy and autism spectrum disorder (ASD). ASD is the presenting symptom (25-50% of patients).

View Article and Find Full Text PDF

mTOR Ser1261 is an AMPK-dependent phosphosite in mouse and human skeletal muscle not required for mTORC2 activity.

FASEB J

January 2025

August Krogh Section for Human and Molecular Physiology, Department of Nutrition, Exercise and Sports, University of Copenhagen, Copenhagen, Denmark.

The kinases AMPK, and mTOR as part of either mTORC1 or mTORC2, are major orchestrators of cellular growth and metabolism. Phosphorylation of mTOR Ser1261 is reportedly stimulated by both insulin and AMPK activation and a regulator of both mTORC1 and mTORC2 activity. Intrigued by the possibilities that Ser1261 might be a convergence point between insulin and AMPK signaling in skeletal muscle, we investigated the regulation and function of this site using a combination of human exercise, transgenic mouse, and cell culture models.

View Article and Find Full Text PDF

Macropinocytosis is a nonselective form of endocytosis that allows cancer cells to largely take up the extracellular fluid and its contents, including nutrients, growth factors, etc. We first elaborate meticulously on the process of macropinocytosis. Only by thoroughly understanding this entire process can we devise targeted strategies against it.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!